Klein-Gordon 方程

Klein-Gordon 方程是相对论量子力学中最基本的方程之一。现在我们遵循“一次量子化程式”,从相对论质能关系出发,对 Klein-Gordon 方程给出形式的推导:

注意在量子场论中,我们一般采用自然单位制,即 =c=1\hbar = c =1

相对论质能关系为

E2=m2+p2(1)E^2 = m^2 + p^2 \tag{1}

将物理量使用算子代替,并且在坐标表象中有:

{EE^=itmm^=mpp^=i(2)\left\{ \begin{aligned} &E \rightarrow \hat{E} = i\frac{\partial}{\partial t}\\ &m \rightarrow \hat{m} = m\\ &p \rightarrow \hat{p} = -i\nabla\\ \end{aligned} \right.\tag{2}

即将 c-number (classcial number) 用对应的 q-number (quantum number) 代替,即一次量子化。

得到 Klein-Gordon 方程为:

2ϕt2=(m22)ϕ-\frac{\partial^2 \phi}{\partial t^2} = (m^2-\nabla^2)\phi

利用四导数 μ\partial_{\mu} 写为:

(μμ+m2)ϕ=0(3)(\partial_{\mu}\partial^{\mu} + m^2)\phi = 0 \tag{3}

四导数定义为:

μ=(0,1,2,3)μ=(0,1,2,3)\begin{aligned} \partial_{\mu} &= (\partial_0,\partial_1,\partial_2,\partial_3)\\ \partial^{\mu} &= (\partial_0,-\partial_1,-\partial_2,-\partial_3)\\ \end{aligned}

虽然在相对论量子力学中,Klein-Gordon 方程存在很多问题:如负能解与负几率,它并不是一个自洽的方程。但之后我们将会看到,在场论中,Klein-Gordon 方程可以用来描述自旋为零的玻色子场。Klein-Gordon 方程所对应的拉格朗日量为:

L=12μϕμϕ12m2ϕ2(4)L = \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - \frac{1}{2}m^2\phi^2 \tag{4}

Klein-Gordon 场的量子化

满足 Klein-Gordon 方程实值场 ϕ(x,t)\phi(\bm{x},t) 称为 Klein-Gordon 场。为了将 Klein-Gordon 场量子化,我们首先回顾对经典谐振子进行量子化的方法。

普朗克振子

经典谐振子的哈密顿量具有以下形式:

H=p22m+12mω2x2(5)H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2x^2 \tag{5}

将 c-number 替换为 q-number,并根据对易关系进行一次量子化:

H^=p^22m+12mω2x^2,[x^,p^]=i(6)\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2,\quad [\hat{x},\hat{p}] = i \tag{6}

我们将量子化后的简谐振子称为 普朗克振子 Planck oscillator。引入 阶梯算子 ladder operator

{a^=p^2mωimω2x^a^=p^2mω+imω2x^(7)\left\{ \begin{aligned} &\hat{a} = \frac{\hat{p}}{\sqrt{2m\omega}} - i\sqrt{\frac{m\omega}{2}} \hat{x}\\ &\hat{a}^\dagger = \frac{\hat{p}}{\sqrt{2m\omega}} + i\sqrt{\frac{m\omega}{2}} \hat{x}\\ \end{aligned}\tag{7} \right.

a^\hat{a} 称为 湮灭算子 annihilation operatora^\hat{a}^\dagger 称为 产生算子 creation operator。我们将在本篇末理解此处命名的含义。

狄拉克引入阶梯算子,是基于以下考虑:对于 c-number 组成的哈密顿量,我们可以进行因式分解:

H=p22m(12mω2x2)=(p2m)2(im2ωx)2=ω(1ω)2(p2mim2ωx)(p2m+im2ωx)=ω(p2mωimω2x)(p2mω+imω2x)\begin{aligned} H &= \frac{p^2}{2m} - (-\frac{1}{2}m\omega^2x^2)\\ &= (\frac{p}{\sqrt{2m}})^2 - (-i\sqrt{\frac{m}{2}}\omega x)^2\\ &= \omega(\frac{1}{\sqrt{\omega}})^2(\frac{p}{\sqrt{2m}} - i\sqrt{\frac{m}{2}}\omega x)(\frac{p}{\sqrt{2m}} + i\sqrt{\frac{m}{2}}\omega x)\\ &= \omega(\frac{p}{\sqrt{2m\omega}} - i\sqrt{\frac{m\omega}{2}} x)(\frac{p}{\sqrt{2m\omega}} + i\sqrt{\frac{m\omega}{2}} x)\\ \end{aligned}

然后将坐标算子和动量算子进行线性组合成阶梯算子。

利用 (7)(7) 式将坐标算子与动量算子使用阶梯算子表示:

{x^=12mω(a^+a^)p^=imω2(a^a^)(8)\left\{ \begin{aligned} & \hat{x} = \frac{1}{\sqrt{2m\omega}} (\hat{a} + \hat{a}^\dagger)\\ & \hat{p} = -i\sqrt{\frac{m\omega}{2}}(\hat{a} - \hat{a}^\dagger) \end{aligned}\tag{8} \right.

那么对易关系成为:

i=[x^,p^]=i2[a^+a^,a^a^]=i[a^,a^][a^,a^]=1(9)i = [\hat{x},\hat{p}] = -\frac{i}{2}[\hat{a}+\hat{a}^\dagger,\hat{a}-\hat{a}^\dagger] = i[\hat{a},\hat{a}^\dagger] \Leftrightarrow [\hat{a},\hat{a}^\dagger] = 1\tag{9}

这里实际上说明,对易关系 [x^,p^]=i[\hat{x},\hat{p}] = i[a^,a^]=1[\hat{a},\hat{a}^\dagger] = 1 是等价的,这提示我们,第二式也能作为量子化的出发点。

使用阶梯算子将哈密顿量写为:

H^=ω4(a^a^)2+ω4(a^+a^)2=ω2(a^a^+a^a^)=ω(a^a^+12[a^,a^])=ω(a^a^+12)(10)\begin{aligned} \hat{H} &= -\frac{\omega}{4}(\hat{a}-\hat{a}^\dagger)^2 + \frac{\omega}{4}(\hat{a}+\hat{a}^\dagger)^2\\ &= \frac{\omega}{2}(\hat{a}\hat{a}^\dagger+\hat{a}^\dagger\hat{a})\\ &= \omega(\hat{a}^\dagger\hat{a} + \frac{1}{2} [\hat{a},\hat{a}^\dagger])\\ &= \omega(\hat{a}^\dagger\hat{a} + \frac{1}{2})\\ \end{aligned}\tag{10}

我们现在来求解普朗克振子的本征值问题。

首先来看 n^a^a^\hat{n} \equiv \hat{a}^\dagger\hat{a},它是厄密算子,其本征值为实数。其与阶梯算子的对易关系容易计算:

[n^,a^]=a^[n^,a^]=a^(11)[\hat{n},\hat{a}] = -\hat{a}\quad [\hat{n},\hat{a}^\dagger] = \hat{a}^\dagger \tag{11}

假定 λ|\lambda\ranglen^\hat{n} 的本征值为 λ\lambda 的本征态,即:

n^λ=λλ\hat{n}|\lambda\rangle = \lambda |\lambda\rangle

可以得到:

n^a^λ=(a^n^+[n^,a])λ=(λ+1)a^λn^a^λ=(a^n^+[n^,a])λ=(λ1)a^λ(12)\begin{aligned} \hat{n}\hat{a}^\dagger|\lambda\rangle &= (\hat{a}^\dagger\hat{n} + [\hat{n},a^\dagger])|\lambda\rangle\\ &= (\lambda+1) \hat{a}^\dagger|\lambda\rangle\\ \hat{n}\hat{a}|\lambda\rangle &= (\hat{a}\hat{n} + [\hat{n},a])|\lambda\rangle\\ &= (\lambda-1) \hat{a}|\lambda\rangle\tag{12} \end{aligned}

因此 aλa^\dagger|\lambda\ranglen^\hat{n} 的本征值为 λ+1\lambda+1 的本征态,aλa|\lambda\ranglen^\hat{n} 的本征值为 λ1\lambda-1 的本征态,有:

aλ=c+,λλ+1,aλ=c,λλ1a^\dagger|\lambda\rangle = c_{+,\lambda}|\lambda+1\rangle,\quad a|\lambda\rangle = c_{-,\lambda}|\lambda-1\rangle

计算因子 c±,λc_{\pm,\lambda}

λa^a^λ=λc+,λc+,λλ=c+,λ2λa^a^λ=λn^λ=λ\begin{aligned} &\langle \lambda|\hat{a}\hat{a}^\dagger|\lambda\rangle = \langle \lambda|c_{+,\lambda}^*c_{+,\lambda}|\lambda\rangle = |c_{+,\lambda}|^2\\ &\langle \lambda|\hat{a}\hat{a}^\dagger|\lambda\rangle = \langle \lambda|\hat{n}|\lambda\rangle =\lambda \end{aligned}

此处可以得到本征值 λ0\lambda \geqslant 0,可以取:

c+,λ=λc_{+,\lambda} = \sqrt{\lambda}

同理有:

c,λ=λ1c_{-,\lambda} = \sqrt{\lambda-1}

由于本征值大于等于零,而每次 a^\hat{a} 作用到 λ|\lambda\rangle 上得到本征值减一的本征态。那么可以得到 λ\lambda 应当只能取非负整数,我们于是将本征态为 n|n\rangle。且有:

a^0=0\hat{a}|0\rangle = 0

0|0\rangle 称为 基态真空态
综上,我们得到任意本征态:

n=1n1an1=1(n1)!(a)n0|n\rangle = \frac{1}{\sqrt{n-1}}a^\dagger|n-1\rangle = \frac{1}{\sqrt{(n-1)!}}(a^\dagger)^n|0\rangle

Klein-Gordon 场的量子化

Klein-Gordon 场 ϕ(x,t)\phi(\bm{x},t) 满足方程:

2t2ϕ(x,t)=(m22)ϕ(x,t)(13)-\frac{\partial^2}{\partial t^2}\phi(\bm{x},t) = (m^2-\nabla^2)\phi(\bm{x},t) \tag{13}

此处特别标注 ϕ\phi 的自变量为 x\bm{x},表示其在坐标空间内取值。本质上说我们是在坐标表象下写出方程 (13)(13),而 ϕ(x,t)=xϕ(t)\phi(\bm{x},t) = \langle \bm{x}|\phi(t)\rangle

ϕ\phi 为实值场要求:

ϕ(x,t)=ϕ(x,t)(14)\phi(\bm{x},t) = \phi^*(\bm{x},t) \tag{14}

现在我们期望在动量表象中重写 Klein-Gordon 方程,首先波函数可以写为:

ϕ(x,t)=xϕ(t)=d3p(2π)3xppϕ(t)=d3p(2π)3eipxϕ(p,t)(15)\begin{aligned} \phi(\bm{x},t) &= \langle \bm{x}|\phi(t)\rangle = \int \frac{d^3p}{(2\pi)^3} \langle \bm{x}|\bm{p}\rangle \langle \bm{p}|\phi(t)\rangle\\ &= \int \frac{d^3p}{(2\pi)^3} e^{i\bm{p}\cdot\bm{x}}\phi(\bm{p},t)\\ \end{aligned}\tag{15}

其中 ϕ(p,t)\phi(\bm{p},t) 就是动量表象下的波函数。式 (15)(15) 在形式上看就是一个傅里叶变换。此处 ϕ(x,t)\phi(\bm{x},t) 为实值场等价要求:

ϕ(p,t)=ϕ(p,t)(16)\phi^*(\bm{p},t) = \phi(-\bm{p},t)\tag{16}

ϕ(x,t)=d3p(2π)3eipxϕ(p,t)=d3p(2π)3eipxϕ(p,t)ϕ(x,t)=d3p(2π)3eipxϕ(p,t)ϕ(p,t)=ϕ(p,t)\begin{aligned} \phi^*(\bm{x},t) &= \int \frac{d^3p}{(2\pi)^3} e^{-i\bm{p}\cdot\bm{x}}\phi^*(\bm{p},t)\\ &= \int \frac{d^3p}{(2\pi)^3} e^{i\bm{p}\cdot\bm{x}}\phi^*(-\bm{p},t)\\ \phi(\bm{x},t)&= \int \frac{d^3p}{(2\pi)^3} e^{i\bm{p}\cdot\bm{x}}\phi(\bm{p},t)\\ \Rightarrow & \phi^*(\bm{p},t) = \phi(-\bm{p},t) \end{aligned}

(15)(15) 式代入 (13)(13),由此动量表象中的 Klein-Gordon 方程成为:

[2t2+(p2+m2)]ϕ(p,t)=0(17)[\frac{\partial^2}{\partial t^2} + (|\bm{p}|^2+m^2)] \phi(\bm{p},t) = 0 \tag{17}

上述方程与一个频率为 ωp=p2+m2\omega_{\bm{p}} = \sqrt{|\bm{p}|^2 + m^2} 的简谐振子的振动方程形式一样。对应的哈密顿量为:

Hp=12π2(p,t)+12ωp2ϕ2(p,t),π=ϕt(18)H_{\bm{p}} = \frac{1}{2}\pi^2(\bm{p},t) + \frac{1}{2}\omega_{\bm{p}}^2\phi^2(\bm{p},t), \quad \pi = \frac{\partial \phi}{\partial t} \tag{18}

回忆我们处理简谐振子进行量子化的方法,通过引入阶梯算子,我们可以很轻松的计算谐振子的本征态与能级。现在,我们也想对上述问题应用相同的技巧。不过我们现在有一点疑问需要说明:我们明确我们所讨论问题的 绘景 picture。我们现在一直在 薛定谔绘景 Schrödinger picture 讨论问题:即认为算子不变,而波函数进行演化。在对简谐振子量子化的式 (6)(6) 中,我们将物理量直接用算子代替。而在 (17)(17) 式中,物理量 π,ϕ\pi,\phi 却是一个随时间演化的量!在这里,我们的做法是:只在一个固定的时刻论问题,因此 π,ϕ\pi,\phi 只是一个取值在特定时间的物理量。也就是说,现在我们已经能在固定时间对 (17)(17) 进行量子化了,下一篇我们能看到,如果要给出场的演化信息,必须要换到 海森堡绘景 Heisenberg 中进行讨论。

类比 (8)(8) 式,引入阶梯算子:

{ϕ^(p)=12ωp(a^p+a^p)π^(p)=iωp2(a^pa^p)(19)\left\{ \begin{aligned} \hat{\phi}(\bm{p}) &= \frac{1}{\sqrt{2\omega_{\bm{p}}}}(\hat{a}_{\bm{p}}+\hat{a}^\dagger_{-\bm{p}})\\ \hat{\pi}(\bm{p}) &= -i\sqrt{\frac{\omega_{\bm{p}}}{2}}(\hat{a}_{\bm{p}}-\hat{a}^\dagger_{-\bm{p}})\\ \end{aligned}\tag{19} \right.

注意为了保证 ϕ(x,t)\phi(\bm{x},t) 为实值场,条件 (16)(16) 需要满足,因此我们为阶梯算子标上不同的下标。

坐标表象中的场量和动量可以表示为:

ϕ^(x)=d3p(2π)312ωp(a^p+a^p)eipx=d3p(2π)312ωp(a^peipx+a^peipx)π^(x)=d3p(2π)3(i)ωp2(a^pa^p)eipx=d3p(2π)3(i)ωp2(a^peipxa^peipx)(20)\begin{aligned} \hat{\phi}(\bm{x}) &= \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2\omega_{\bm{p}}}}(\hat{a}_{\bm{p}}+\hat{a}_{-\bm{p}}^\dagger)e^{i\bm{p}\cdot\bm{x}}\\ &= \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2\omega_{\bm{p}}}}(\hat{a}_{\bm{p}}e^{i\bm{p}\cdot\bm{x}}+\hat{a}_{\bm{p}}^\dagger e^{-i\bm{p}\cdot\bm{x}}) \\ \hat{\pi}(\bm{x}) &= \int \frac{d^3p}{(2\pi)^3} (-i)\sqrt{\frac{\omega_{\bm{p}}}{2}}(\hat{a}_{\bm{p}}-\hat{a}_{-\bm{p}}^\dagger)e^{i\bm{p}\cdot\bm{x}}\\ &= \int \frac{d^3p}{(2\pi)^3} (-i)\sqrt{\frac{\omega_{\bm{p}}}{2}}(\hat{a}_{\bm{p}}e^{i\bm{p}\cdot\bm{x}}-\hat{a}_{\bm{p}}^\dagger e^{-i\bm{p}\cdot\bm{x}}) \\ \end{aligned}\tag{20}

上式子中的含有 eipxe^{i\bm{p}\cdot\bm{x}}eipxe^{-i\bm{p}\cdot\bm{x}} 的项称为 正频项 positive frequency负频项 negative frequency

现在我们需要引入对易关系,作为对 Klein-Gordon 场量子化的出发点。根据 (9)(9) 式,我们给定阶梯算子的对易关系作为量子化条件

首先我们有基本的观察:

  1. [a^p,a^q]=[a^p,a^q]=0[\hat{a}_{\bm{p}},\hat{a}_{\bm{q}}] = [\hat{a}^\dagger_{\bm{p}},\hat{a}^\dagger_{\bm{q}}] = 0

  2. [a^p,a^q]=0, pq[\hat{a}_{\bm{p}},\hat{a}^\dagger_{\bm{q}}] =0 ,\forall\ \bm{p}\neq \bm{q}

只有形如 [ap,ap][a_{\bm{p}},a_{\bm{p}}^\dagger] 的项才不为零。这提示我们可以采用下式作为量子化条件:

[a^p,a^q]=(2π)3δ(3)(pq)(21)[\hat{a}_{\bm{p}},\hat{a}^\dagger_{\bm{q}}] = (2\pi)^3\delta^{(3)}(\bm{p}-\bm{q}) \tag{21}

利用 (19)(19) 可得:

[ϕ^(p),π^(q)]=iωq4ωp[a^p+a^p,a^qa^q]=iωq4ωp([a^p,a^q]+[a^p,a^q])=(2π)3iδ(3)(p+q)(22)\begin{aligned} [\hat{\phi}(\bm{p}),\hat{\pi}(\bm{q})] &= -i\sqrt{\frac{\omega_{\bm{q}}}{4\omega_{\bm{p}}}} [\hat{a}_{\bm{p}}+\hat{a}^\dagger_{-\bm{p}},\hat{a}_{\bm{q}}-\hat{a}^\dagger_{-\bm{q}}]\\ &= -i\sqrt{\frac{\omega_{\bm{q}}}{4\omega_{\bm{p}}}} (-[\hat{a}_{\bm{p}},\hat{a}^\dagger_{-\bm{q}}]+[\hat{a}^\dagger_{-\bm{p}},\hat{a}_{\bm{q}}])\\ &= (2\pi)^3i\delta^{(3)}(\bm{p}+\bm{q})\\ \end{aligned} \tag{22}

由此:

[ϕ^(x),π^(y)]=d3pd3q(2π)6ei(px+qy)[ϕ^(p),π^(q)]=d3pd3q(2π)6ei(px+qy)(2π)3iδ(3)(p+q)=id3p(2π)3eip(xy)=iδ(3)(xy)(23)\begin{aligned} [\hat{\phi}(\bm{x}),\hat{\pi}(\bm{y})] &= \int \frac{d^3pd^3q}{(2\pi)^6}e^{i(\bm{p}\cdot\bm{x}+\bm{q}\cdot\bm{y})}[\hat{\phi}(\bm{p}),\hat{\pi}(\bm{q})]\\ &= \int \frac{d^3pd^3q}{(2\pi)^6}e^{i(\bm{p}\cdot\bm{x}+\bm{q}\cdot\bm{y})}(2\pi)^3i\delta^{(3)}(\bm{p}+\bm{q})\\ &= i\int \frac{d^3p}{(2\pi)^3}e^{i\bm{p}\cdot(\bm{x}-\bm{y})}\\ &=i\delta^{(3)}(\bm{x}-\bm{y})\\ \end{aligned}\tag{23}

这正是对易关系 [x^,p^]=i[\hat{x},\hat{p}] = i 在场论中的推广!到这里,我们已经完成了对 Klein-Gordon 场进行量子化的过程。

哈密顿量、动量的对角化

现在我们希望用阶梯算子去表示体系的哈密顿量与动量,这称为算子的 对角化 过程。

我们先对哈密顿量进行对角化。Klein-Gordon 场的哈密顿量为:

H(x)=12π2+12(ϕ)2+12m2ϕ2(24)\mathcal{H}(\bm{x}) = \frac{1}{2}\pi^2 + \frac{1}{2}(\nabla\phi)^2 + \frac{1}{2}m^2\phi^2\tag{24}

得到:

H^=d3xH^=d3x[12π^2+12(ϕ^)2+12m2ϕ^2]=d3xd3pd3q(2π)6ei(p+q)x{ωpωq4(a^pa^p)(a^qa^q)+pq+m24ωpωq(a^p+a^p)(a^q+a^q)}=d3pd3q(2π)3δ(3)(p+q)ei(p+q)x{ωpωq4(a^pa^p)(a^qa^q)+pq+m24ωpωq(a^p+a^p)(a^q+a^q)}=d3p(2π)3{ωp2(a^pa^p)(a^qa^q)+ωp2(a^p+a^p)(a^q+a^q)}=d3p(2π)3ωp2(a^pa^p+a^pa^p)=d3p(2π)3ωp2(a^pa^p+a^pa^p)=d3p(2π)3ωp(a^pa^p+12[a^p,a^p])\begin{aligned} \hat{H} &= \int d^3x \mathcal{\hat{H}} \\ &= \int d^3x[\frac{1}{2}\hat{\pi}^2 + \frac{1}{2}(\nabla\hat{\phi})^2 + \frac{1}{2}m^2\hat{\phi}^2] \\ &=\int d^3x \int \frac{d^3pd^3q}{(2\pi)^6}e^{i(\bm{p}+\bm{q})\cdot\bm{x}} \{-\frac{\sqrt{\omega_{\bm{p}}\omega_{\bm{q}}}}{4}(\hat{a}_{\bm{p}}-\hat{a}^\dagger_{-\bm{p}})(\hat{a}_{\bm{q}}-\hat{a}^\dagger_{-\bm{q}}) + \frac{-\bm{p}\cdot\bm{q}+m^2}{4\sqrt{\omega_{\bm{p}}\omega_{\bm{q}}}} (\hat{a}_{\bm{p}}+\hat{a}^\dagger_{-\bm{p}})(\hat{a}_{\bm{q}}+\hat{a}^\dagger_{-\bm{q}}) \}\\ &=\int \frac{d^3pd^3q}{(2\pi)^3}\delta^{(3)}(\bm{p}+\bm{q})e^{i(\bm{p}+\bm{q})\cdot\bm{x}} \{-\frac{\sqrt{\omega_{\bm{p}}\omega_{\bm{q}}}}{4}(\hat{a}_{\bm{p}}-\hat{a}^\dagger_{-\bm{p}})(\hat{a}_{\bm{q}}-\hat{a}^\dagger_{-\bm{q}}) + \frac{-\bm{p}\cdot\bm{q}+m^2}{4\sqrt{\omega_{\bm{p}}\omega_{\bm{q}}}} (\hat{a}_{\bm{p}}+\hat{a}^\dagger_{-\bm{p}})(\hat{a}_{\bm{q}}+\hat{a}^\dagger_{-\bm{q}}) \}\\ &=\int \frac{d^3p}{(2\pi)^3}\{-\frac{\omega_{\bm{p}}}{2}(\hat{a}_{\bm{p}}-\hat{a}^\dagger_{-\bm{p}})(\hat{a}_{\bm{q}}-\hat{a}^\dagger_{-\bm{q}}) + \frac{\omega_{\bm{p}}}{2} (\hat{a}_{\bm{p}}+\hat{a}^\dagger_{-\bm{p}})(\hat{a}_{\bm{q}}+\hat{a}^\dagger_{-\bm{q}}) \}\\ &=\int \frac{d^3p}{(2\pi)^3} \frac{\omega_{\bm{p}}}{2} (\hat{a}_{\bm{p}}\hat{a}^\dagger_{\bm{p}}+\hat{a}^\dagger_{-\bm{p}}\hat{a}_{-\bm{p}})\\ &=\int \frac{d^3p}{(2\pi)^3} \frac{\omega_{\bm{p}}}{2} (\hat{a}_{\bm{p}}\hat{a}^\dagger_{\bm{p}}+\hat{a}^\dagger_{\bm{p}}\hat{a}_{\bm{p}})\\ & = \int \frac{d^3 p}{(2\pi)^3} \omega_{\bm{p}} (\hat{a}_{\bm{p}}^\dagger \hat{a}_{\bm{p}} + \frac{1}{2}[\hat{a}_{\bm{p}}, \hat{a}^\dagger_{\bm{p}}]) \end{aligned}

上式第二项正比于 δ(0)\delta(0),是一个无限大的常量,它是所有振动模式零点能的总和。由于实验中只能观测到能量的变化(相对于基态而言),因此我们实际上可以忽略这一项。那么哈密顿量为:

H^=d3p(2π)3ωpa^pa^p(25)\hat{H} =\int \frac{d^3 p}{(2\pi)^3} \omega_{\bm{p}} \hat{a}_{\bm{p}}^\dagger \hat{a}_{\bm{p}} \tag{25}

另外,容易给出哈密顿量与阶梯算子的对易关系:

[H^,a^p]=ωpa^p[H^,a^p]=ωpa^p(26)[\hat{H}, \hat{a}_{\bm{p}}^\dagger] = \omega_{\bm{p}}\hat{a}_{\bm{p}}^\dagger\quad [\hat{H}, \hat{a}_{\bm{p}}] = -\omega_{\bm{p}}\hat{a}_{\bm{p}} \tag{26}

由此,我们同样用 0|0\rangle 表示 基态真空态)。满足:

a^p0=0, p(27)\hat{a}_{\bm{p}}|0\rangle =0,\quad \forall\ \bm{p} \tag{27}

那么真空态的能量为零。那么态 a^p0\hat{a}_{\bm{p}}^\dagger|0\rangle 的能量为:

H^a^p0=(a^pH^+[H^,a^p])0=ωpa^p0\hat{H}\hat{a}_{\bm{p}}^\dagger|0\rangle = (\hat{a}_{\bm{p}}^\dagger\hat{H}+[\hat{H},\hat{a}_{\bm{p}}^\dagger])|0\rangle = \omega_{\bm{p}}\hat{a}_{\bm{p}}^\dagger|0\rangle

那么态 a^p0\hat{a}_{\bm{p}}^\dagger|0\rangle 的能量为 ωp\omega_{\bm{p}}。我们得到:将产生算子 a^p\hat{a}^\dagger_{\bm{p}} 作用于真空态将得到其他能量本征值的态,例如:

a^pa^q0\hat{a}_{\bm{p}}^\dagger \hat{a}_{\bm{q}}^\dagger|0\rangle

表示能量为 ωp+ωq\omega_{\bm{p}}+\omega_{\bm{q}} 的态。


在介绍能量-动量张量时,我们给出了场的物理动量:

P=d3xπ(x)ϕ(x)(28)\bm{P}=-\int d^3x \pi(\bm{x})\nabla \phi(\bm{x}) \tag{28}

同样的方法,可以对动量对角化:

P^=d3xπ^(x)ϕ^(x)=d3xd3pd3q(2π)6(iωp4ωq)ei(p+q)xiq(a^pa^p)(a^q+a^q)=d3pd3q(2π)3δ(3)(p+q)(iωp4ωq)iq(a^pa^p)(a^q+a^q)=d3p(2π)312p(a^pa^p)(a^p+a^p)=d3p(2π)312p(a^pa^pa^pa^p+a^pa^pa^pa^p)(29)\begin{aligned} \hat{\bm{P}}&=-\int d^3x \hat{\pi}(\bm{x})\nabla \hat{\phi}(\bm{x})\\ &=-\int d^3x \int \frac{d^3pd^3q}{(2\pi)^6} (-i\sqrt{\frac{\omega_{\bm{p}}}{4\omega_{\bm{q}}}})e^{i(\bm{p}+\bm{q})\cdot\bm{x}}i\bm{q}(\hat{a}_{\bm{p}}-\hat{a}^\dagger_{-\bm{p}})(\hat{a}_{\bm{q}}+\hat{a}^\dagger_{-\bm{q}})\\ &=-\int \frac{d^3pd^3q}{(2\pi)^3}\delta^{(3)}(\bm{p}+\bm{q}) (-i\sqrt{\frac{\omega_{\bm{p}}}{4\omega_{\bm{q}}}})i\bm{q}(\hat{a}_{\bm{p}}-\hat{a}^\dagger_{-\bm{p}})(\hat{a}_{\bm{q}}+\hat{a}^\dagger_{-\bm{q}})\\ &=\int \frac{d^3p}{(2\pi)^3}\frac{1}{2}\bm{p}(\hat{a}_{\bm{p}}-\hat{a}^\dagger_{-\bm{p}})(\hat{a}_{-\bm{p}}+\hat{a}^\dagger_{\bm{p}})\\ &=\int \frac{d^3p}{(2\pi)^3}\frac{1}{2}\bm{p}(\hat{a}_{\bm{p}}\hat{a}_{-\bm{p}}-\hat{a}^\dagger_{-\bm{p}}\hat{a}_{-\bm{p}}+\hat{a}_{\bm{p}}\hat{a}^\dagger_{\bm{p}}-\hat{a}^\dagger_{-\bm{p}}\hat{a}^\dagger_{\bm{p}})\\ \end{aligned}\tag{29}

考虑到:

d3p(2π)3pa^pa^p=d3p(2π)3pa^pa^p=d3p(2π)3pa^pa^p\int \frac{d^3p}{(2\pi)^3}\bm{p}\hat{a}_{\bm{p}}\hat{a}_{-\bm{p}} = -\int \frac{d^3p}{(2\pi)^3}\bm{p}\hat{a}_{-\bm{p}}\hat{a}_{\bm{p}} = -\int \frac{d^3p}{(2\pi)^3}\bm{p}\hat{a}_{\bm{p}}\hat{a}_{-\bm{p}}

所以:

d3p(2π)3pa^pa^p=0\int \frac{d^3p}{(2\pi)^3}\bm{p}\hat{a}_{\bm{p}}\hat{a}_{-\bm{p}} = 0

于是 (29)(29) 式称为:

P^=d3p(2π)312p(a^pa^p+a^pa^p)=d3p(2π)312p(a^pa^p+a^pa^p)=d3p(2π)3p(a^pa^p+12[a^p,a^p])\begin{aligned} \hat{\bm{P}} &= \int \frac{d^3p}{(2\pi)^3}\frac{1}{2}\bm{p}(-\hat{a}^\dagger_{-\bm{p}}\hat{a}_{-\bm{p}}+\hat{a}_{\bm{p}}\hat{a}^\dagger_{\bm{p}})\\ &=\int \frac{d^3p}{(2\pi)^3}\frac{1}{2}\bm{p}(\hat{a}^\dagger_{\bm{p}}\hat{a}_{\bm{p}}+\hat{a}_{\bm{p}}\hat{a}^\dagger_{\bm{p}})\\ &= \int \frac{d^3p}{(2\pi)^3}\bm{p}(\hat{a}^\dagger_{\bm{p}}\hat{a}_{\bm{p}}+\frac{1}{2}[\hat{a}_{\bm{p}},\hat{a}^\dagger_{\bm{p}}])\\ \end{aligned}

其中第二项表示真空的动量,这一项是无法被观测的,去掉这一项后我们得到:

P^=d3p(2π)3pa^pa^p\hat{\bm{P}} = \int \frac{d^3p}{(2\pi)^3} \bm{p}\hat{a}_{\bm{p}}^\dagger \hat{a}_{\bm{p}}

容易得到下列对易关系:

[P^,a^p]=pa^p[P^,a^p]=pa^p(26)[\hat{\bm{P}}, \hat{a}_{\bm{p}}^\dagger] = \bm{p}\hat{a}_{\bm{p}}^\dagger\quad [\hat{\bm{P}}, \hat{a}_{\bm{p}}] = -\bm{p}\hat{a}_{\bm{p}} \tag{26}

同理,将产生算子 a^p\hat{a}^\dagger_{\bm{p}} 作用于真空态 0|0\rangle,得到的态 a^p0\hat{a}^\dagger_{\bm{p}}|0\rangle 对应的动量为 p\bm{p}

于是我们进行以下总结:将产生算子 a^p\hat{a}^\dagger_{\bm{p}} 作用于真空态 0|0\rangle 会得到能量为 ωp\omega_{\bm{p}}、动量为 p\bm{p} 的态 a^p0\hat{a}_{\bm{p}}^\dagger|0\rangle。我们将其看作 a^p\hat{a}_{\bm{p}}^\dagger 激发出了一个具有相应能量、动量的 粒子。将湮灭算子 a^p\hat{a}^\dagger_{\bm{p}} 作用于真空态 0|0\rangle 进行作用会使能量下降 ωp\omega_{\bm{p}}、动量减少 p\bm{p},我们可以看作 a^p\hat{a}_{\bm{p}} 湮灭了一个对应粒子。

考虑到 ap,aqa^\dagger_{\bm{p}},a^\dagger_{\bm{q}} 是对易的,由此 apaq0a_{\bm{p}}^\dagger a_{\bm{q}}^\dagger|0\rangleaqap0a_{\bm{q}}^\dagger a_{\bm{p}}^\dagger|0\rangle 表示同一个两粒子态;并且一个模式 p\bm{p} 上可以占据任意多个粒子。由此可以得到 Klein-Gordon 场的粒子服从 玻色-爱因斯坦统计。对应描述的粒子为 玻色子 boson

单粒子态

现在我们考虑表示一个粒子的 单粒子态。对于真空态,我们有 00=1\langle 0|0\rangle = 1。考虑一个含有动量为 p\bm{p} 的粒子的单粒子态 p|\bm{p}\rangle,有:

pa^p0|\bm{p}\rangle \propto \hat{a}_{\bm{p}}^\dagger|0\rangle

如果定义 p=a^p0|\bm{p}\rangle = \hat{a}_{\bm{p}}^\dagger|0\rangle,我们得到:

qp=0aqap0=0[aq,ap]0=(2π)3δ(3)(pq)\langle\bm{q}|\bm{p}\rangle = \langle 0|a_{\bm{q}} a_{\bm{p}}^\dagger |0\rangle = \langle 0|[a_{\bm{q}},a_{\bm{p}}^\dagger] |0\rangle = (2\pi)^3\delta^{(3)}(\bm{p}-\bm{q})

但是这是不合适的,因为上述条件并不是洛伦兹不变的。

洛伦兹不变:即在洛伦兹变换下不发生变化。我们之后将仔细讨论。

我们建议取:

p=2Epap0(27)|\bm{p}\rangle = \sqrt{2E_{\bm{p}}} a^\dagger_{\bm{p}} |0\rangle \tag{27}

如此给出的归一化条件将是洛伦兹不变的:

qp=(2π)32Epδ(3)(pq)\langle\bm{q}|\bm{p}\rangle = (2\pi)^3 2E_{\bm{p}}\delta^{(3)}(\bm{p}-\bm{q})

证明:我们可以考虑一个特定的洛伦兹变换,首先 rotation 是显然保证上式的不变性的。下面考虑 boost,例如对 p3p_3 的 boost:

p3=γ(p3+βE)E=γ(E+βp3)\begin{aligned} &p_3' = \gamma(p_3+\beta E)\\ &E' = \gamma(E+\beta p_3)\\ \end{aligned}

可得:

Eδ(3)(pq)=Eδ(p1q1)δ(p2q2)δ(p3q3)=Eδ(p1q1)δ(p2q2)δ(p3q3)=Eδ(p1q1)δ(p2q2)δ(p3q3)(dp3dp3)1=Eδ(3)(pq)(γ(1+βdEdp3))1=Eδ(3)(pq)(γ(1+βp3E))1=Eδ(3)(pq)\begin{aligned} E' \delta^{(3)}(\bm{p}'-\bm{q}') &= E' \delta(p_1-q_1)\delta(p_2-q_2)\delta(p'_3-q'_3)\\ &= E' \delta(p_1-q_1)\delta(p_2-q_2)\delta(p'_3-q'_3)\\ &= E' \delta(p_1-q_1)\delta(p_2-q_2)\delta(p_3-q_3) (\frac{dp_3'}{dp_3})^{-1}\\ &= E' \delta^{(3)}(\bm{p}-\bm{q}) (\gamma(1+\beta \frac{dE}{dp_3}))^{-1}\\ &= E' \delta^{(3)}(\bm{p}-\bm{q}) (\gamma(1+\beta \frac{p_3}{E}))^{-1}\\ &= E \delta^{(3)}(\bm{p}-\bm{q})\\ \end{aligned}

上述推导中利用以下公式:

δ(f(x)f(x0))=1f(x0)δ(xx0)E2=p2+m22EdE=2pdp\begin{aligned} &\delta(f(x)-f(x_0)) = \frac{1}{|f'(x_0)|}\delta(x-x_0)\\ &E^2 = p^2 + m^2 \Rightarrow 2EdE = 2pdp\\ \end{aligned}

考虑对波函数的洛伦兹变换 Λ\Lambda,这等价于用一个幺正算子作用于波函数。首先真空是洛伦兹不变的:

U(Λ)0=0U(\Lambda)|0\rangle = |0\rangle

对于单粒子态有:

U(Λ)p=ΛpU(\Lambda)|\bm{p}\rangle = |\Lambda\bm{p}\rangle

由此可得:

U(Λ)p=U(Λ)2Epap0=2EpU(Λ)apU1(Λ)0Λp=2EΛpaΛp0\begin{aligned} &U(\Lambda)|\bm{p}\rangle = U(\Lambda)\sqrt{2E_{\bm{p}}} a_{\bm{p}}^\dagger|0\rangle = \sqrt{2E_{\bm{p}}} U(\Lambda)a_{\bm{p}}^\dagger U^{-1}(\Lambda) |0\rangle\\ &|\Lambda\bm{p}\rangle =\sqrt{2E_{\Lambda\bm{p}}} a_{\Lambda\bm{p}}^\dagger|0\rangle\\ \end{aligned}

得到产生算子在洛伦兹变化下的形式:

U(Λ)apU1(Λ)=EΛpEpaΛp(28)U(\Lambda)a_{\bm{p}}^\dagger U^{-1}(\Lambda) = \sqrt{\frac{E_{\Lambda\bm{p}}}{E_{\bm{p}}}} a_{\Lambda\bm{p}}^\dagger \tag{28}

所有单粒子态构成一组正交完备基,这就是 完备性关系

(1)oneparticle=d3p(2π)3p12Epp(29)(1)_{one-particle} = \int \frac{d^3p}{(2\pi)^3} |\bm{p}\rangle\frac{1}{2E_{\bm{p}}} \langle \bm{p}| \tag{29}

可以得到完备性关系是洛伦兹不变的。具体来说,只要注意到以下积分是洛伦兹不变的:

d3p(2π)312Ep=d4p(2π)32πδ(p2m2)p0>0\int \frac{d^3p}{(2\pi)^3} \frac{1}{2E_{\bm{p}}} = \int \frac{d^4p}{(2\pi)^3} 2\pi\delta(p^2-m^2)|_{p^0>0}

另外我们使用 ϕ(x)\phi(\bm{x}) 作用于 0|0\rangle 也会得到一个单粒子态:

ϕ(x)0=d3p(2π)312ωp(apeipx+apeipx)0=d3p(2π)312ωpapeipx0=d3p(2π)312Epeipxp\begin{aligned} \phi(\bm{x})|0\rangle &=\int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2\omega_{\bm{p}}}}(a_{\bm{p}}e^{i\bm{p}\cdot\bm{x}}+a_{\bm{p}}^\dagger e^{-i\bm{p}\cdot\bm{x}})|0\rangle\\ &=\int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2\omega_{\bm{p}}}}a_{\bm{p}}^\dagger e^{-i\bm{p}\cdot\bm{x}}|0\rangle\\ &=\int \frac{d^3p}{(2\pi)^3} \frac{1}{2E_{\bm{p}}}e^{-i\bm{p}\cdot\bm{x}}|\bm{p}\rangle\\ \end{aligned}

这是一些具有确定动量的单粒子态的叠加。我们解释为:ϕ(x)\phi(\bm{x}) 作用于 0|0\rangle 在的效果相当于在位置 x\bm{x} 产生了一个粒子。

我们作如下验证:

0ϕ(x)p=d3p(2π)312Eqeiqxqp=eipx\langle 0|\phi(\bm{x})|\bm{p}\rangle = \int \frac{d^3p}{(2\pi)^3}\frac{1}{2E_{\bm{q}}}e^{i\bm{q}\cdot\bm{x}} \langle \bm{q}|\bm{p}\rangle =e^{i\bm{p}\cdot\bm{x}}

我们发现其结果正为平面波,即可以认为:

ϕ(x)0x\phi(\bm{x})|0\rangle \sim |\bm{x}\rangle