现在,我们着手进行一些 QED 的计算。为了方便之后的计算,我们首先介绍 Trace Technology,即有关 Dirac 矩阵及其乘积的迹的计算。

Trace Technology

Dirac 矩阵的性质为:

{γμ,γν}=2gμν×1\{\gamma^{\mu},\gamma^{\nu}\} = 2g^{\mu\nu}\times \bm{1}

现在进行迹的计算:

  • tr(1)=4\mathrm{tr}(\bm{1}) = 4

  • tr(γμ)\mathrm{tr}(\gamma^{\mu})

tr(γμ)=tr(γ5γ5γμ)=tr(γ5γμγ5)=tr(γ5γ5γμ)=tr(γμ)tr(γμ)=0\begin{aligned} \mathrm{tr}(\gamma^{\mu}) &= \mathrm{tr}(\gamma^5\gamma^5\gamma^{\mu})\\ &=-\mathrm{tr}(\gamma^5\gamma^{\mu}\gamma^5)\\ &=-\mathrm{tr}(\gamma^5\gamma^5\gamma^{\mu})\\ &= - \mathrm{tr}(\gamma^{\mu}) \Rightarrow \mathrm{tr}(\gamma^{\mu})=0\\ \end{aligned}

上述推导应用了反对易关系:{γ5,γμ}=0\{\gamma^5,\gamma^{\mu}\}=0 与迹的性质:tr(ABC)=tr(CAB)\mathrm{tr}(ABC) = \mathrm{tr}(CAB)

  • tr(γμγν)\mathrm{tr}(\gamma^{\mu}\gamma^{\nu})

tr(γμγν)=tr(2gμν1γνγμ)=8gμνtr(γμγν)\begin{aligned} \mathrm{tr}(\gamma^{\mu}\gamma^{\nu}) &= \mathrm{tr}(2g^{\mu\nu}\cdot\bm{1} - \gamma^{\nu}\gamma^{\mu})\\ &= 8g^{\mu\nu} - \mathrm{tr}(\gamma^{\mu}\gamma^{\nu})\\ \end{aligned}

推得:

tr(γμγν)=4gμν\mathrm{tr}(\gamma^{\mu}\gamma^{\nu}) = 4g^{\mu\nu}

任何偶数个 γ\gamma 矩阵的缩并都可以通过类似技巧得到,例如:

tr(γμγνγργσ)=tr(2gμνγργσγνγμγργσ)=tr(2gμνγργσγν2gμργσ+γνγργμγσ)=tr(2gμνγργσγν2gμργσ+γνγρ2gμσγνγργσγμ)=8(gμνgρσgμρgνσ+gνρgμσ)tr(γμγνγργσ)\begin{aligned} \mathrm{tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}) &= \mathrm{tr}(2g^{\mu\nu}\gamma^{\rho}\gamma^{\sigma} - \gamma^{\nu}\gamma^{\mu}\gamma^{\rho}\gamma^{\sigma})\\ &=\mathrm{tr}(2g^{\mu\nu}\gamma^{\rho}\gamma^{\sigma} - \gamma^{\nu}2g^{\mu\rho}\gamma^{\sigma} + \gamma^{\nu}\gamma^{\rho}\gamma^{\mu}\gamma^{\sigma})\\ &=\mathrm{tr}(2g^{\mu\nu}\gamma^{\rho}\gamma^{\sigma} - \gamma^{\nu}2g^{\mu\rho}\gamma^{\sigma} + \gamma^{\nu}\gamma^{\rho}2g^{\mu\sigma}-\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma^{\mu})\\ &= 8(g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma} + g^{\nu\rho}g^{\mu\sigma}) - \mathrm{tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}) \end{aligned}

得到:

tr(γμγνγργσ)=4(gμνgρσgμρgνσ+gνρgμσ)\mathrm{tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}) = 4(g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma} + g^{\nu\rho}g^{\mu\sigma})

可以得到:

tr(γ5)=tr(iγ0γ1γ2γ3)=0\mathrm{tr}(\gamma^5) = \mathrm{tr}(i\gamma^0\gamma^1\gamma^2\gamma^3) = 0

  • tr(γμγνγργσγ5)=4iϵμνρσ\mathrm{tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma^5) = -4i\epsilon^{\mu\nu\rho\sigma}

ϵμνρσ\epsilon^{\mu\nu\rho\sigma} 对于参数 (μνρσ)=(0123)(\mu\nu\rho\sigma)=(0123) 及其偶置换取 +1+1,其奇置换取 1-1。并且具有以下性质:

ϵαβγδϵαβγδ=24ϵαβγμϵαβγν=6δ  νμϵαβμνϵαβρσ=2(δ  ρμδ  σνδ  σμδ  ρν)\begin{aligned} &\epsilon^{\alpha\beta\gamma\delta}\epsilon_{\alpha\beta\gamma\delta} = -24\\ &\epsilon^{\alpha\beta\gamma\mu}\epsilon_{\alpha\beta\gamma\nu} = -6\delta^{\mu}_{\ \ \nu}\\ &\epsilon^{\alpha\beta\mu\nu}\epsilon_{\alpha\beta\rho\sigma} = -2(\delta^{\mu}_{\ \ \rho}\delta^{\nu}_{\ \ \sigma}-\delta^{\mu}_{\ \ \sigma}\delta^{\nu}_{\ \ \rho}) \end{aligned}

注意:

ϵαβγδ=gααgββgγγgδδϵαβγδ=ϵαβγδ\epsilon_{\alpha\beta\gamma\delta} = g_{\alpha\alpha'}g_{\beta\beta'} g_{\gamma\gamma'} g_{\delta\delta'} \epsilon^{\alpha'\beta'\gamma'\delta'} = - \epsilon^{\alpha\beta\gamma\delta}

另外一个有用的关系让我们可以调换迹中 γ\gamma 矩阵的顺序,即

tr(γμγν)=tr(γνγμ)\begin{aligned} \mathrm{tr}(\gamma^{\mu}\gamma^{\nu}\cdots) &= \mathrm{tr}(\cdots\gamma^{\nu}\gamma^{\mu}) \end{aligned}

我们可以利用电荷共轭变换的性质:

C2=1,CγμC=(γμ)TC^2=1,\quad C\gamma^{\mu}C = -(\gamma^{\mu})^T

可得:

tr(γμγν)=tr(CγμCCγνC)=(1)ntr[(γμ)T(γν)T]=tr(γνγμ)\begin{aligned} \mathrm{tr}(\gamma^{\mu}\gamma^{\nu}\cdots) &= \mathrm{tr}(C\gamma^{\mu}CC\gamma^{\nu}C\cdots)\\ &=(-1)^n\mathrm{tr}[(\gamma^{\mu})^T(\gamma^{\nu})^T\cdots]\\ &=\mathrm{tr}(\cdots\gamma^{\nu}\gamma^{\mu})\\ \end{aligned}

在求迹运算前,提前处理一些缩并可以简化计算。

  • γμγμ\gamma^{\mu}\gamma_{\mu}

γμγμ=γμγνgμν=12γμγνgμν+12γνγμgνμ=12γμγνgμν+12γνγμgμν=12{γμ,γν}gμν=gμνgμν=4\begin{aligned} \gamma^{\mu}\gamma_{\mu} &= \gamma^{\mu}\gamma^{\nu}g_{\mu\nu}\\ &= \frac{1}{2}\gamma^{\mu}\gamma^{\nu}g_{\mu\nu} + \frac{1}{2}\gamma^{\nu}\gamma^{\mu}g_{\nu\mu}\\ &=\frac{1}{2}\gamma^{\mu}\gamma^{\nu}g_{\mu\nu} + \frac{1}{2}\gamma^{\nu}\gamma^{\mu}g_{\mu\nu}\\ &=\frac{1}{2}\{\gamma^{\mu},\gamma^{\nu}\}g_{\mu\nu}\\ &=g^{\mu\nu}g_{\mu\nu}\\ &= 4\\ \end{aligned}

  • γμγνγμ\gamma^{\mu}\gamma^{\nu}\gamma_{\mu}

γμγνγμ=(2gμνγνγμ)γμ=2γν4γν=2γν\begin{aligned} \gamma^{\mu}\gamma^{\nu}\gamma_{\mu} &= (2g^{\mu\nu} - \gamma^{\nu}\gamma^{\mu})\gamma_{\mu}\\ &= 2\gamma^{\nu} - 4\gamma^{\nu} = -2\gamma^{\nu}\\ \end{aligned}

  • γμγνγργμ\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma_{\mu}

γμγνγργμ=(2gμνγνγμ)γργμ=2γργνγν(2gμργργμ)γμ=2γργν2γνγρ+4γνγρ=2{γρ,γν}=4gρν\begin{aligned} \gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma_{\mu} &= (2g^{\mu\nu}-\gamma^{\nu}\gamma^{\mu})\gamma^{\rho}\gamma_{\mu}\\ &=2\gamma^{\rho}\gamma^{\nu} - \gamma^{\nu} (2g^{\mu\rho} - \gamma^{\rho}\gamma^{\mu})\gamma_{\mu}\\ &= 2\gamma^{\rho}\gamma^{\nu} - 2\gamma^{\nu}\gamma^{\rho} + 4\gamma^{\nu}\gamma^{\rho}\\ &=2\{\gamma^{\rho},\gamma^{\nu}\}\\ &=4g^{\rho\nu} \end{aligned}

  • γμγνγργσγμ\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma_{\mu}

γμγνγργσγμ=(2gμνγνγμ)γργσγμ=2γργσγν4γνgρσ=2γργσγν2(γργσ+γσγρ)γν=2γσγργν\begin{aligned} \gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma_{\mu} &= (2g^{\mu\nu}-\gamma^{\nu}\gamma^{\mu})\gamma^{\rho}\gamma^{\sigma}\gamma_{\mu}\\ &=2\gamma^{\rho}\gamma^{\sigma}\gamma^{\nu} - 4\gamma^{\nu} g^{\rho\sigma}\\ &=2\gamma^{\rho}\gamma^{\sigma}\gamma^{\nu} - 2(\gamma^{\rho}\gamma^{\sigma} + \gamma^{\sigma}\gamma^{\rho})\gamma^{\nu}\\ &= -2\gamma^{\sigma}\gamma^{\rho}\gamma^{\nu}\\ \end{aligned}

e+eμ+μe^{+}e^{-}\rightarrow \mu^{+}\mu^{-}

e+eμ+μe^{+}e^{-}\rightarrow \mu^{+}\mu^{-} 是最简单的 QED 过程。其费曼图为:

其跃迁矩阵元为:

iM=vˉs(p)(ieγμ)us(p)(igμνq2)uˉr(k)(ieγν)vr(k)\begin{aligned} i\mathcal{M} = \bar{v}^s(p')(-ie\gamma^{\mu})u^s(p)(-\frac{ig_{\mu\nu}}{q^2})\bar{u}^r(k)(-ie\gamma^\nu)v^{r'}(k') \end{aligned}

整理得到:

M(e(p)e+(p)μ(k)μ+(k))=ie2q2(vˉ(p)γμu(p))(uˉ(k)γμv(k))\mathcal{M}(e^{-}(p)e^{+}(p')\rightarrow \mu^-(k)\mu^+(k'))= \frac{ie^2}{q^2}(\bar{v}(p')\gamma^{\mu}u(p))(\bar{u}(k)\gamma_{\mu}v(k'))

跃迁矩阵元的模方为:

M2=e4q4(vˉ(p)γμu(p)uˉ(p)γνv(p))(uˉ(k)γμv(k)vˉ(k)γνu(k))(1)\begin{aligned} |\mathcal{M}|^2 = \frac{e^4}{q^4}(\bar{v}(p')\gamma^{\mu}u(p)\bar{u}(p)\gamma^{\nu}v(p'))(\bar{u}(k)\gamma_{\mu}v(k')\bar{v}(k')\gamma_{\nu}u(k)) \end{aligned}\tag{1}

在实验中,我们很难控制自旋态。在大多数实验中,我们通常是制备一些未极化的初态,这意味着它处于任何自旋的概率是一样的。我们应当对所有可能的自旋态求平均。对应求得的散射截面称为 非极化截面 unpolarized cross section

这意味着我们要计算以下物理量:

12s12srrM(s,sr,r)2(2)\frac{1}{2}\sum_{s}\frac{1}{2}\sum_{s'}\sum_{r}\sum_{r'}|\mathcal{M}(s,s'\rightarrow r,r')|^2 \tag{2}

利用完备性关系:

sus(p)uˉs(p)=γp+msvs(p)vˉs(p)=γpm\begin{aligned} &\sum_s u^s(p)\bar{u}^s(p) = \gamma\cdot p + m\\ &\sum_s v^s(p)\bar{v}^s(p) = \gamma\cdot p - m\\ \end{aligned}

可得:

ss(vˉs(p)γμus(p)uˉs(p)γνvs(p))=s(vˉs(p)γμ(sus(p)uˉs(p))γνvs(p))=s(vˉas(p)γabμ(γp+m)bcγcdνvds(p))=s((vds(p)vˉas(p))γabμ(γp+m)bcγcdν)=(γpm)daγabμ(γp+m)bcγcdν=tr[(γpm)γμ(γp+m)γν](3)\begin{aligned} &\sum_{ss'}(\bar{v}^{s'}(p')\gamma^{\mu}u^s(p)\bar{u}^s(p)\gamma^{\nu}v^{s'}(p')) \\ &= \sum_{s'}(\bar{v}^{s'}(p')\gamma^{\mu}(\sum_{s} u^s(p)\bar{u}^s(p))\gamma^{\nu}v^{s'}(p'))\\ &=\sum_{s'}(\bar{v}^{s'}_a(p')\gamma^{\mu}_{ab}(\gamma\cdot p + m)_{bc}\gamma^{\nu}_{cd}v^{s'}_{d}(p'))\\ &=\sum_{s'}((v^{s'}_{d}(p')\bar{v}^{s'}_a(p'))\gamma^{\mu}_{ab}(\gamma\cdot p + m)_{bc}\gamma^{\nu}_{cd})\\ &=(\gamma\cdot p' - m)_{da}\gamma^{\mu}_{ab}(\gamma\cdot p + m)_{bc}\gamma^{\nu}_{cd}\\ &=\mathrm{tr}[(\gamma\cdot p' - m)\gamma^{\mu}(\gamma\cdot p + m)\gamma^{\nu}] \end{aligned}\tag{3}

代入 (2)(2) 式可得:

14ssrrM2=14e4q4(vˉ(p)γμu(p)uˉ(p)γνv(p))(uˉ(k)γμv(k)vˉ(k)γνu(k))=e44q2tr[(γpme)γμ(γp+me)γν]tr[(γk+mμ)γμ(γkmμ)γν]\begin{aligned} \frac{1}{4}\sum_{ss'rr'}|\mathcal{M}|^2 &= \frac{1}{4}\frac{e^4}{q^4}(\bar{v}(p')\gamma^{\mu}u(p)\bar{u}(p)\gamma^{\nu}v(p'))(\bar{u}(k)\gamma_{\mu}v(k')\bar{v}(k')\gamma_{\nu}u(k))\\ &= \frac{e^4}{4q^2}\mathrm{tr}[(\gamma\cdot p' - m_e)\gamma^{\mu}(\gamma\cdot p + m_e)\gamma^{\nu}]\mathrm{tr}[(\gamma\cdot k + m_{\mu})\gamma_{\mu}(\gamma\cdot k' - m_{\mu})\gamma_{\nu}] \end{aligned}

现在我们来计算式 (3)(3),可以得到:

tr[(γpme)γμ(γp+me)γν]=tr[(γρpρme)γμ(γσpσ+me)γν]=tr(γργμγσγνpρpσ+γργμγνpσmeγμγσγνpσmeme2γμγν)=4(gρμgσνgρσgμν+gρνgμσ)pρpσ4me2gμν=4(pμpν+pνpμgμν(pp+me2))\begin{aligned} &\mathrm{tr}[(\gamma\cdot p' - m_e)\gamma^{\mu}(\gamma\cdot p + m_e)\gamma^{\nu}]\\ &=\mathrm{tr}[(\gamma^{\rho} p'_{\rho} - m_e)\gamma^{\mu}(\gamma^{\sigma} p_{\sigma} + m_e)\gamma^{\nu}]\\ &= \mathrm{tr}(\gamma^{\rho}\gamma^{\mu}\gamma^{\sigma}\gamma^{\nu}p'_{\rho}p_{\sigma} + \gamma^{\rho}\gamma^{\mu}\gamma^{\nu}p'_{\sigma}m_e - \gamma^{\mu}\gamma^{\sigma}\gamma^{\nu}p_{\sigma}m_e - m_e^2 \gamma^{\mu}\gamma^{\nu})\\ &= 4(g^{\rho\mu}g^{\sigma\nu} - g^{\rho\sigma}g^{\mu\nu}+ g^{\rho\nu}g^{\mu\sigma})p'_{\rho}p_{\sigma} - 4m_e^2g^{\mu\nu}\\ &=4(p'^{\mu}p^{\nu}+p'^{\nu}p^{\mu} - g^{\mu\nu}(p'\cdot p + m_e^2)) \end{aligned}

近似认为 me=0m_e =0,那么可得:

14spinsM2=4e4q4(pμpν+pνpμgμν(pp+me2))(kμkν+kνkμgμν(kk+mμ2))=8e4q4((pk)(pk)+(pk)(pk)+mμ2(pp))(4)\begin{aligned} \frac{1}{4}\sum_{spins}|\mathcal{M}|^2&=\frac{4e^4}{q^4}(p'^{\mu}p^{\nu}+p'^{\nu}p^{\mu} - g^{\mu\nu}(p'\cdot p + m_e^2))(k_{\mu}k'_{\nu}+k_{\nu}k'_{\mu} - g_{\mu\nu}(k\cdot k' + m_{\mu}^2))\\ &= \frac{8e^4}{q^4}((p'\cdot k)(p\cdot k') + (p\cdot k)(p'\cdot k') + m_{\mu}^2(p\cdot p') ) \end{aligned}\tag{4}

考虑初态为正负电子对撞的情况。

得到:

pk=pk=E2+Ekcosθpk=pk=E2Ekcosθpp=2E2,q2=(p+p)2=4E2(5)\begin{aligned} &p'\cdot k = p\cdot k' = E^2 + E|\bm{k}|\cos\theta\\ &p\cdot k = p'\cdot k' = E^2 - E|\bm{k}|\cos\theta\\ &p\cdot p' = 2E^2,\quad q^2 = (p+p')^2 = 4E^2 \end{aligned}\tag{5}

代入得到:

14spinsM2=8e4q4((E2+Ekcosθ)2+(E2Ekcosθ)2+2mμ2E2)=8e416E4(2E4+2E2(E2mμ2)cos2θ+2mμ2E2)=e4[(1+mμ2E2)+(1mμ2E2)cos2θ](6)\begin{aligned} \frac{1}{4}\sum_{spins}|\mathcal{M}|^2 &= \frac{8e^4}{q^4}((E^2 + E|\bm{k}|\cos\theta)^2 + (E^2 - E|\bm{k}|\cos\theta)^2 + 2m_{\mu}^2E^2 )\\ &= \frac{8e^4}{16E^4}(2E^4 + 2E^2(E^2-m_{\mu}^2)\cos^2\theta + 2m_{\mu}^2E^2)\\ &= e^4[(1+\frac{m_{\mu}^2}{E^2})+(1-\frac{m_{\mu}^2}{E^2})\cos^2\theta] \end{aligned}\tag{6}

相应的微分散射截面为:

dσdΩ=12Ecm2k16π2Ecm214spinsM2=α24Ecm21mμ2E2[(1+mμ2E2)+(1mμ2E2)cos2θ](7)\begin{aligned} \frac{d\sigma}{d\Omega} &= \frac{1}{2E_{cm}^2}\frac{|\bm{k}|}{16\pi^2E_{cm}^2}\cdot \frac{1}{4}\sum_{spins} |\mathcal{M}|^2\\ &= \frac{\alpha^2}{4E_{cm}^2}\sqrt{1-\frac{m_{\mu}^2}{E^2}}[(1+\frac{m_{\mu}^2}{E^2})+(1-\frac{m_{\mu}^2}{E^2})\cos^2\theta] \end{aligned}\tag{7}

通过积分得到总散射截面:

σtotal=4πα23Ecm21mμ2E2(1+12mμ2E2)(8)\sigma_{total} = \frac{4\pi\alpha^2}{3E_{cm}^2}\sqrt{1-\frac{m_{\mu}^2}{E^2}}(1+\frac{1}{2}\frac{m^2_{\mu}}{E^2}) \tag{8}

在高能极限时(EmμE\gg m_{\mu}),相应的微分散射截面与总散射截面为:

dσdΩ=α24Ecm2(1+cos2θ)σtotal=4πα23Ecm2(138(mμE)4)(9)\begin{aligned} &\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4E_{cm}^2}(1+\cos^2\theta)\\ &\sigma_{total} = \frac{4\pi\alpha^2}{3E_{cm}^2}(1-\frac{3}{8}(\frac{m_{\mu}}{E})^4-\cdots) \end{aligned}\tag{9}

螺旋度结构

高能极限下 e+eμ+μe^{+}e^{-} \rightarrow \mu^+\mu^- 的微分散射截面是容易计算的,但却不好理解其中出现的 1+cos2θ1+\cos^2\theta 因子。现在我们通过来计算各个自旋态对应的散射截面,即 极化截面 polarized cross section 来理解这件事。

对于无质量费米子,以下矩阵将 Dirac 旋量映射成 右手/左手旋量:

1+γ52=(0001)1γ52=(1000)(10)\frac{1+\gamma^5}{2} = \begin{pmatrix} 0 & 0\\ 0 & 1\\ \end{pmatrix} \quad \frac{1-\gamma^5}{2} = \begin{pmatrix} 1 & 0\\ 0 & 0\\ \end{pmatrix}\tag{10}

我们现在对包含 Dirac 旋量跃迁矩阵元做如下替换,以用来计算对于右手旋量的跃迁矩阵元。

vˉ(p)γμu(p)vˉ(p)γμ(1+γ52)u(p)(11)\bar{v}(p')\gamma^{\mu}u(p) \rightarrow \bar{v}(p')\gamma^{\mu}(\frac{1+\gamma^5}{2})u(p)\tag{11}

这里:

(1+γ52)u(p)(\frac{1+\gamma^5}{2})u(p)

成为一右手旋量。

(11)(11) 式还可以写为:

vˉ(p)γμ(1+γ52)u(p)=v(p)(1+γ52)γ0γμu(p)(12)\bar{v}(p')\gamma^{\mu}(\frac{1+\gamma^5}{2})u(p) = v^\dagger(p')(\frac{1+\gamma^5}{2})\gamma^{0}\gamma^{\mu}u(p) \tag{12}

此时:

v(p)(1+γ52)v^\dagger(p')(\frac{1+\gamma^5}{2})

成为一右手旋量。于是我们得到:对于 u(p),v(p)u(p),v(p),改变左手旋量的值对结果并无影响。

而注意到右手旋量 v(p)v(p) 对应于左手反粒子。因此我们说:只有正反粒子具有相反的螺旋度时,该项才对跃迁矩阵元有贡献。

考虑一个右手态电子与左手态反电子的贡献:

spinsvˉ(p)γμ(1+γ52)u(p)2=spins[vˉ(p)γμ(1+γ52)u(p)][uˉ(p)γν(1+γ52)v(p)]=tr((pγ)γμ(1+γ52)(pγ)γν(1+γ52))=tr((pγ)γμ(pγ)γν(1+γ52)2)=tr((pγ)γμ(pγ)γν(1+γ52))=2(pμpν+pνpμgμνppiϵαμβνpαpβ)\begin{aligned} \sum_{spins} |\bar{v}(p')\gamma^{\mu}(\frac{1+\gamma^5}{2})u(p)|^2&= \sum_{spins} [\bar{v}(p')\gamma^{\mu}(\frac{1+\gamma^5}{2})u(p)][\bar{u}(p)\gamma^{\nu}(\frac{1+\gamma^5}{2})v(p')]\\ &= \mathrm{tr}((p'\cdot\gamma)\gamma^{\mu}(\frac{1+\gamma^5}{2})(p\cdot\gamma)\gamma^{\nu}(\frac{1+\gamma^5}{2}))\\ &= \mathrm{tr}((p'\cdot\gamma)\gamma^{\mu}(p\cdot\gamma)\gamma^{\nu}(\frac{1+\gamma^5}{2})^2)\\ &= \mathrm{tr}((p'\cdot\gamma)\gamma^{\mu}(p\cdot\gamma)\gamma^{\nu}(\frac{1+\gamma^5}{2}))\\ &= 2(p'^{\mu}p^{\nu} + p'^{\nu}p^{\mu} -g^{\mu\nu}p\cdot p' - i\epsilon^{\alpha\mu\beta\nu}p'_{\alpha}p_{\beta}) \end{aligned}

考虑末态为右手态 μ\mu^{-} 与左手态 μ+\mu^{+}

spinsuˉ(k)γμ(1+γ52)v(k)2=2(kμkν+kνkμgμνkkiϵρμσνkρkσ)\sum_{spins} |\bar{u}(k)\gamma_{\mu}(\frac{1+\gamma^5}{2})v(k')|^2 = 2(k_{\mu}k'_{\nu} + k_{\nu}k'_{\mu} -g_{\mu\nu}k\cdot k' - i\epsilon_{\rho\mu\sigma\nu}k^{\rho}k'^{\sigma})

得到跃迁矩阵元为:

M2=4e4q4[2(pμpν+pνpμgμνppiϵαμβνpαpβ)][2(kμkν+kνkμgμνkkiϵρμσνkρkσ)]=4e4q4[2(pk)(pk)+2(pk)(pk)ϵαμβνϵαμβνpαpβkρkσ]=16e4q4(pk)(pk)=e4(1+cosθ)2\begin{aligned} |\mathcal{M}|^2 &= \frac{4e^4}{q^4}[2(p'^{\mu}p^{\nu} + p'^{\nu}p^{\mu} -g^{\mu\nu}p\cdot p' - i\epsilon^{\alpha\mu\beta\nu}p'_{\alpha}p_{\beta})][2(k_{\mu}k'_{\nu} + k_{\nu}k'_{\mu} -g_{\mu\nu}k\cdot k' - i\epsilon_{\rho\mu\sigma\nu}k^{\rho}k'^{\sigma})]\\ &= \frac{4e^4}{q^4}[2(p\cdot k)(p'\cdot k') + 2(p\cdot k')(p'\cdot k) - \epsilon^{\alpha\mu\beta\nu}\epsilon_{\alpha\mu\beta\nu} p'_{\alpha} p_{\beta} k^{\rho} k'^{\sigma} ]\\ &= \frac{16e^4}{q^4}(p\cdot k')(p'\cdot k)\\ &= e^4(1+\cos\theta)^2\\ \end{aligned}

得到对应的微分散射截面为:

dσdΩ(eReL+μRμL+)=α24Ecm2(1+cosθ)2(13)\frac{d\sigma}{d\Omega}(e^{-}_Re^+_{L} \rightarrow \mu^{-}_{R}\mu^{+}_{L}) = \frac{\alpha^2}{4E_{cm}^2}(1+\cos\theta)^2\tag{13}

同理,可以计算剩下三种情况的微分散射截面:

dσdΩ(eReL+μLμR+)=α24Ecm2(1cosθ)2dσdΩ(eLeR+μRμL+)=α24Ecm2(1cosθ)2dσdΩ(eLeR+μLμR+)=α24Ecm2(1+cosθ)2(14)\begin{aligned} \frac{d\sigma}{d\Omega}(e^{-}_Re^+_{L} \rightarrow \mu^{-}_{L}\mu^{+}_{R}) = \frac{\alpha^2}{4E_{cm}^2}(1-\cos\theta)^2\\ \frac{d\sigma}{d\Omega}(e^{-}_Le^+_{R} \rightarrow \mu^{-}_{R}\mu^{+}_{L}) = \frac{\alpha^2}{4E_{cm}^2}(1-\cos\theta)^2\\ \frac{d\sigma}{d\Omega}(e^{-}_Le^+_{R} \rightarrow \mu^{-}_{L}\mu^{+}_{R}) = \frac{\alpha^2}{4E_{cm}^2}(1+\cos\theta)^2\\ \end{aligned}\tag{14}


现在我们考虑直接代入波函数的表达式计算跃迁矩阵元。

M=e2q2(vˉ(p)γμu(p))(uˉ(k)γμv(k))(15)\mathcal{M} = \frac{e^2}{q^2}(\bar{v}(p')\gamma^{\mu}u(p))(\bar{u}(k)\gamma_{\mu}v(k'))\tag{15}

在高能极限下:

u(p)=(pσξpσˉξ)E2E(12(1pσ)ξ12(1+pσ)ξ)v(p)=(pσξpσˉξ)E2E(12(1pσ)ξ12(1+pσ)ξ)(16)\begin{aligned} u(p) &= \begin{pmatrix} \sqrt{p\cdot \sigma}\xi\\ \sqrt{p\cdot \bar{\sigma}}\xi\\ \end{pmatrix}\underset{E\rightarrow\infty}{\longrightarrow} \sqrt{2E}\begin{pmatrix} \frac{1}{2}(1-\bm{p}\cdot\bm{\sigma})\xi\\ \frac{1}{2}(1+\bm{p}\cdot\bm{\sigma})\xi\\ \end{pmatrix}\\ v(p) &= \begin{pmatrix} \sqrt{p\cdot \sigma}\xi\\ -\sqrt{p\cdot \bar{\sigma}}\xi\\ \end{pmatrix}\underset{E\rightarrow\infty}{\longrightarrow} \sqrt{2E}\begin{pmatrix} \frac{1}{2}(1-\bm{p}\cdot\bm{\sigma})\xi\\ -\frac{1}{2}(1+\bm{p}\cdot\bm{\sigma})\xi\\ \end{pmatrix}\\ \end{aligned}\tag{16}

p^σ\hat{\bm{p}}\cdot\bm{\sigma} 正是螺旋度算符,对于右手正粒子来说:(pσ)ξ=+ξ(\bm{p}\cdot\bm{\sigma})\xi = + \xi;对于左手正粒子来说:(pσ)ξ=ξ(\bm{p}\cdot\bm{\sigma})\xi = - \xi。对于反粒子来说会相反。

现在选取一个特定的初态。电子和反电子的动量 p,pp,p' 分别指向 zz 轴的正、负方向,对于右手电子来说,自旋为:ξ=(10)\xi = \begin{pmatrix}1\\ 0\\ \end{pmatrix};对于左手反电子来说,自旋为:ξ=(01)\xi = \begin{pmatrix}0\\ 1\\ \end{pmatrix}

得到正/反粒子旋量为:

u(p)=2E(0010)v(p)=2E(0001)(17)\begin{aligned} u(p) = \sqrt{2E}\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ \end{pmatrix}\qquad v(p') = \sqrt{2E}\begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \\ \end{pmatrix} \end{aligned} \tag{17}

得到:

vˉ(p)γμu(p)=2E(0,1)σμ(10)=2E(0,1,i,0)(18)\bar{v}(p')\gamma^{\mu}u(p) = 2E\begin{pmatrix} 0,-1\\ \end{pmatrix}\sigma^{\mu}\begin{pmatrix} 1\\ 0\\ \end{pmatrix} = -2E(0,1,i,0) \tag{18}

考虑末态为:

只需要在 xzxz 平面内做一个角度为 θ\theta 的旋转即可,可得:

uˉ(k)γμv(k)=[vˉ(k)γμu(k)]=[2E(0,cosθ,i,sinθ)]=2E(0,cosθ,i,sinθ)(19)\begin{aligned} \bar{u}(k)\gamma^{\mu}v(k') &= [\bar{v}(k')\gamma^{\mu}u(k)]^*\\ &= [-2E(0,\cos\theta,i,-\sin\theta)]^*\\ &= -2E(0,\cos\theta,-i,-\sin\theta)\\ \end{aligned}\tag{19}

(18)(19)(18)(19) 代入 (15)(15) 得到:

M(eReL+μRμL+)=e2(1+cosθ)(20)\mathcal{M}(e^{-}_{R}e^+_L\rightarrow \mu_R^-\mu_L^+) = -e^2(1+\cos\theta) \tag{20}

类似的计算得到剩下三个跃迁矩阵元:

M(eLeR+μLμR+)=e2(1+cosθ)M(eLeR+μLμR+)=M(eReL+μRμL+)=e2(1cosθ)(21)\begin{aligned} &\mathcal{M}(e^{-}_{L}e^+_R\rightarrow \mu_L^-\mu_R^+) = -e^2(1+\cos\theta)\\ &\mathcal{M}(e^{-}_{L}e^+_R\rightarrow \mu_L^-\mu_R^+)=\mathcal{M}(e^{-}_{R}e^+_L\rightarrow \mu_R^-\mu_L^+) = -e^2(1-\cos\theta)\\ \end{aligned} \tag{21}

非相对论极限

现在讨论在能量稍大于 mμm_{\mu} 时的散射截面。

dσdΩ=α24Ecm21mμ2E2[(1+mμ2E2)+(1mμ2E2)cos2θ]k0α24Ecm2kE2 =α22Ecm2kE\begin{aligned} \frac{d\sigma}{d\Omega} &= \frac{\alpha^2}{4E_{cm}^2}\sqrt{1-\frac{m_{\mu}^2}{E^2}}[(1+\frac{m_{\mu}^2}{E^2})+(1-\frac{m_{\mu}^2}{E^2})\cos^2\theta]\\ &\underset{|\bm{k}|\rightarrow 0}{\longrightarrow} \frac{\alpha^2}{4E_{cm}^2}\frac{|\bm{k}|}{E}\cdot 2\ = \frac{\alpha^2}{2E_{cm}^2}\frac{|\bm{k}|}{E}\\ \end{aligned}

利用初态得到:

vˉ(p)γμu(p)=2E(0,1,i,0)\bar{v}(p')\gamma^{\mu}u(p) = -2E(0,1,i,0)

末态为:

u(k)=m(ξξ)v(k)=m(ξξ)u(k) = \sqrt{m}\begin{pmatrix} \xi\\ \xi\\ \end{pmatrix}\quad v(k') = \sqrt{m}\begin{pmatrix} \xi'\\ -\xi'\\ \end{pmatrix}

其中 ξ\xi' 表示反粒子翻转后的自旋。

得到:

uˉ(k)γμv(k)=m(ξ,ξ)(σˉμ00σμ)(ξξ)={0μ=02mξσiξμ=i\begin{aligned} \bar{u}(k)\gamma^{\mu}v(k') &= m(\xi^\dagger,\xi^\dagger)\begin{pmatrix} \bar{\sigma}^{\mu} & 0\\ 0 & \sigma^{\mu}\\ \end{pmatrix}\begin{pmatrix} \xi' \\ -\xi'\\ \end{pmatrix}\\ &= \left\{\begin{aligned} &0\quad & \mu = 0\\ &-2m\xi^\dagger \sigma^i \xi'\quad & \mu = i\\ \end{aligned}\right. \end{aligned}

可得:

M(eReL+μμ+)=2e2ξ(0100)ξ(22)\mathcal{M}(e^{-}_{R}e^+_L\rightarrow \mu^-\mu^+) = -2e^2\xi^\dagger\begin{pmatrix} 0 & 1\\ 0 & 0\\ \end{pmatrix}\xi'\tag{22}

这是一个与角度无关的量。对末态可能的自旋求和后得到:

M2=4e2(23)\mathcal{M}^2 = 4e^2 \tag{23}

可以得到微分散射截面为:

dσdΩ(eReL+μ+μ)=α2Ecm2kE(24)\frac{d\sigma}{d\Omega}(e_R^-e_L^+ \rightarrow \mu^+\mu^-) = \frac{\alpha^2}{E_{cm}^2} \frac{|\bm{k}|}{E} \tag{24}

束缚态

由于 μμ+\mu^{-}\mu^{+} 之间存在库伦相互作用,因此在能量低于阈值时,此仍然可能发生 ee+μμ+e^{-}e^{+}\rightarrow\mu^{-}\mu^{+} 的反应,并最后生成 μμ+\mu^{-}\mu^{+} 的束缚态。我们现在就来处理这样的问题。

对于反应后生成的两个粒子 1,21,2,首先定义以下物理量:

R=12(r1+r2)r=r1r2K=k1+k2k=12(k1k2)(25)\begin{aligned} &\bm{R} = \frac{1}{2}(\bm{r}_1+\bm{r}_2)\\ &\bm{r} = \bm{r}_1-\bm{r}_2\\ &\bm{K} = \bm{k}_1 + \bm{k}_2\\ &\bm{k} = \frac{1}{2}(\bm{k}_1-\bm{k}_2) \end{aligned}\tag{25}

反应后生成的束缚态可以用自由态的线性叠加表示。我们考虑反应后的束缚态 M2m,K=0M\approx 2m,\bm{K}=0,自旋为 11,方向向上。那么这个束缚态可以表示为:

B=2Md3k(2π)3ψ~(k)12m12mk,k(26)\begin{aligned} |B\rangle = \sqrt{2M}\int \frac{d^3k}{(2\pi)^3}\tilde{\psi}(\bm{k})\frac{1}{\sqrt{2m}}\frac{1}{\sqrt{2m}}|\bm{k}\uparrow,-\bm{k}\uparrow\rangle \end{aligned}\tag{26}

其中 ψ~(k)\tilde{\psi}(\bm{k}) 满足:

ψ~(k)=d3xeikxψ(r)d3k(2π)3ψ~(k)2=1\begin{aligned} &\tilde{\psi}(\bm{k}) = \int d^3x e^{i\bm{k}\cdot\bm{x}}\psi(\bm{r})\\ &\int \frac{d^3k}{(2\pi)^3}|\tilde{\psi}(\bm{k})|^2 =1\\ \end{aligned}

跃迁到这个束缚态的矩阵元为:

M(B)=2Md3k(2π)3ψ~(k)12m12mM(k,k)=2M(2e2)d3k(2π)3ψ~(k)=2M(2e2)ψ(0)(27)\begin{aligned} \mathcal{M}(\uparrow\uparrow\rightarrow B) &= \sqrt{2M}\int \frac{d^3k}{(2\pi)^3}\tilde{\psi}(\bm{k})\frac{1}{\sqrt{2m}}\frac{1}{\sqrt{2m}}\mathcal{M}(\uparrow\uparrow\rightarrow\bm{k}\uparrow,-\bm{k}\uparrow)\\ &= \sqrt{\frac{2}{M}} (-2e^2) \int \frac{d^3k}{(2\pi)^3} \tilde{\psi}(\bm{k})\\ &= \sqrt{\frac{2}{M}}(-2e^2)\psi^*(0)\\ \end{aligned}\tag{27}