现在我们想利用路径积分表述来对电磁场与旋量场进行量子化。

电磁场的量子化

在很早我们就通过假定的方式给出了光子传播子的费曼规则:

igμνk2+iϵ(1)\frac{-ig_{\mu\nu}}{k^2+i\epsilon} \tag{1}

现在我们利用路径积分表述来推导这件事情。

通过分部积分与傅里叶变换,可以将自由电磁场的作用量写为:

S[A]=d4x[14(Fμν)2]=d4x[14FμνFμν]=d4x[14(μAννAμ)Fμν]=d4x[14(AνμAμν)(μAννAμ)]=12d4xAμ(x)(2gμνμν)Aν(x)=12d4xd4kd4k(2π)8ei(k+k)xA~μ(k)(k2gμν+kμkν)A~ν(k)=12d4k(2π)4A~μ(k)(k2gμν+kμkν)A~ν(k)(2)\begin{aligned} S[A] &= \int d^4x [-\frac{1}{4}(F_{\mu\nu})^2]\\ &= \int d^4x[-\frac{1}{4}F^{\mu\nu}F_{\mu\nu}]\\ &= \int d^4x[-\frac{1}{4}(\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu})F_{\mu\nu}]\\ &= \int d^4x[\frac{1}{4}(A^{\nu}\partial^{\mu}-A^{\mu}\partial^{\nu})(\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu})]\\ &= \frac{1}{2}\int d^4x A_{\mu}(x)(\partial^{2}g^{\mu\nu}-\partial^{\mu}\partial^{\nu})A_{\nu}(x)\\ &= \frac{1}{2}\int d^4x \int \frac{d^4kd^4k'}{(2\pi)^8} e^{-i(k+k')\cdot x}\tilde{A}_{\mu}(k)(-k'^2g^{\mu\nu}+k'^{\mu}k'^{\nu})\tilde{A}_{\nu}(k')\\ &= \frac{1}{2}\int \frac{d^4k}{(2\pi)^4}\tilde{A}_{\mu}(k)(-k^2g^{\mu\nu}+k^{\mu}k^{\nu})\tilde{A}_{\nu}(-k)\\ \end{aligned}\tag{2}

为了计算传播子的费曼规则,我们必须计算如下泛函积分:

DAeiS[A](3)\int \mathcal{D}Ae^{iS[A]}\tag{3}

其中:

DA=DA0DA1DA2DA3\mathcal{D}A = \mathcal{D}A^0\mathcal{D}A^1\mathcal{D}A^2\mathcal{D}A^3

我们很快发现,直接计算 (3)(3) 式是有问题的。因为规范自由度的存在,我们可以任意的选取满足条件的 AA,例如取 A~μ=kμα(k)\tilde{A}_{\mu} = k_{\mu}\alpha(k),代入 (2)(2) 中,得到:

S[A]=0S[A] = 0

此时 (3)(3) 式显然是发散的。该问题等价的表述为,光子传播子 DFνρD_{F}^{\nu\rho} 需要满足的方程:

(2gμνμν)DFνρ(xy)=iδμ  ρδ(4)(xy)or(k2gμν+kμkν)D~Fνρ(k)=iδμ  ρ\begin{aligned} &(\partial^2g_{\mu\nu} - \partial_{\mu}\partial_{\nu})D_F^{\nu\rho}(x-y) = i\delta_{\mu}^{\ \ \rho}\delta^{(4)}(x-y)\\ or \quad & (-k^2g_{\mu\nu} + k_{\mu}k_{\nu})\tilde{D}_F^{\nu\rho}(k) = i\delta_{\mu}^{\ \ \rho} \end{aligned}

该方程是的解是不存在的,因为 4×44\times 4 矩阵 (k2gμν+kμkν)(-k^2g_{\mu\nu} + k_{\mu}k_{\nu}) 是奇异的。

如何解决这个问题呢?Faddeev 与 Popov 提出:我们可以增加一个规范固定条件:

G(A)=0(4)G(A) = 0 \tag{4}

其中 G(A)G(A) 是一个规范场的函数,例如 G(A)=μAμG(A) = \partial_{\mu} A^{\mu} 对应于洛伦兹规范。现在我们只将那些满足规范条件的规范场考虑进来。为此,我们需要插入一个恒等算子:

1=DG(Aα)δ(G(Aα))=Dα(x)δ(G(Aα))det(δG(Aα)δα)(5)\begin{aligned} \bm{1} &= \int \mathcal{D}G(A^{\alpha})\delta(G(A^{\alpha}))\\ &= \int \mathcal{D}\alpha(x) \delta(G(A^{\alpha}))\det(\frac{\delta G(A^{\alpha})}{\delta \alpha})\\ \end{aligned}\tag{5}

其中 AαA^{\alpha} 表示经过如下规范变换后的场:

Aμα(x)=Aμ(x)+1eμα(x)(6)A_{\mu}^{\alpha}(x) = A_{\mu}(x) + \frac{1}{e}\partial_{\mu}\alpha(x)\tag{6}

对于洛伦兹规范有:

G(Aα)=μAμ+1e2α(x)(7)G(A^{\alpha}) = \partial^{\mu}A_{\mu} + \frac{1}{e}\partial^2\alpha(x)\tag{7}

如此泛函行列式成为:

det(δG(Aα)δα)=det(1e2)\det(\frac{\delta G(A^{\alpha})}{\delta \alpha}) = \det(\frac{1}{e}\partial^2)

形式上成为一个与 AA 无关的量,我们需要用到这个性质。

那么插入恒等算子 (5)(5) 后,(3)(3) 式成为:

DAeiS[A]=det(δG(Aα)δα)DαDAeiS[A]δ(G(Aα))=det(δG(Aα)δα)DαDAαeiS[Aα]δ(G(Aα))=det(δG(Aα)δα)DαDAeiS[A]δ(G(A))(8)\begin{aligned} \int \mathcal{D}Ae^{iS[A]} &= \det(\frac{\delta G(A^{\alpha})}{\delta \alpha})\int\mathcal{D}\alpha\int \mathcal{D}Ae^{iS[A]}\delta(G(A^{\alpha}))\\ &=\det(\frac{\delta G(A^{\alpha})}{\delta \alpha})\int\mathcal{D}\alpha\int \mathcal{D}A^\alpha e^{iS[A^\alpha]}\delta(G(A^{\alpha}))\\ &=\det(\frac{\delta G(A^{\alpha})}{\delta \alpha})\int\mathcal{D}\alpha\int \mathcal{D}A e^{iS[A]}\delta(G(A))\\ \end{aligned}\tag{8}

其中第二行利用了 DA=DAα,S[A]=S[Aα]\mathcal{D}A = \mathcal{D}A^{\alpha},S[A] = S[A^{\alpha}],第三行将 AαA^{\alpha} 重命名为 AA。为了继续计算,我们必须选取一个规范固定函数,我们选取以下一类函数:

G[A]=μAμ(x)ω(x)(9)G[A] = \partial^{\mu}A_{\mu}(x) - \omega(x)\tag{9}

代入 (9)(9) 式,得到:

DAeiS[A]=det(1e2)DαDAeiS[A]δ(μAμω(x))(10)\int \mathcal{D}Ae^{iS[A]} = \det(\frac{1}{e}\partial^2)\int\mathcal{D}\alpha\int \mathcal{D}A e^{iS[A]}\delta(\partial^{\mu}A_{\mu} - \omega(x)) \tag{10}

既然上式对所有的 ω(x)\omega(x),那么我们可以对所有的 ω(x)\omega(x) 进行积分,我们引入一个高斯形的权重函数。那么 (10)(10) 式成为:

N(ξ)Dωexp[id4xω22ξ]det(1e2)(Dα)DAeiS[A]δ(μAμω(x))=N(ξ)det(1e2)(Dα)DAeiS[A]exp[id4x12ξ(μAμ)2](11)\begin{aligned} &N(\xi)\int \mathcal{D}\omega \exp[-i\int d^4x \frac{\omega^2}{2\xi}]\det(\frac{1}{e}\partial^2)(\int \mathcal{D}\alpha)\int \mathcal{D}A e^{iS[A]}\delta(\partial^{\mu}A_{\mu} - \omega(x))\\ =& N(\xi) \det(\frac{1}{e}\partial^2)(\int \mathcal{D}\alpha)\int \mathcal{D}A e^{iS[A]}\exp[-i\int d^4x \frac{1}{2\xi}(\partial^{\mu}A_{\mu})^2]\tag{11} \end{aligned}

其中 N(ξ)N(\xi) 是一个不重要的归一化常数,ξ\xi 的值是一个可以任意选取的有限值。通过 (11)(11) 式,我们发现,考虑规范固定之后,等价于为拉格朗日量加上额外一项:

12ξ(μAμ)2-\frac{1}{2\xi}(\partial^{\mu}A_{\mu})^2

如此,对于一个规范不变的物理量 O(A)\mathcal{O}(A) 来说,对应的关联函数为:

ΩTO(A)Ω=limT(1iϵ)DAO(A)exp[iTTd4x[L12ξ(μAμ)2]]DAexp[iTTd4x[L12ξ(μAμ)2]](12)\langle \Omega|T\mathcal{O}(A)|\Omega\rangle = \lim_{T\rightarrow \infty(1-i\epsilon)}\frac{\int \mathcal{D}A\mathcal{O}(A)\exp[i\int_{-T}^{T}d^4x[\mathcal{L}-\frac{1}{2\xi}(\partial^{\mu}A_{\mu})^2]]}{\int \mathcal{D}A\exp[i\int_{-T}^{T}d^4x[\mathcal{L}-\frac{1}{2\xi}(\partial^{\mu}A_{\mu})^2]] }\tag{12}

我们再来考虑光子传播子的费曼规则。此时有:

S[A]=d4x[14(Fμν)212ξ(μAμ)2]=12d4k(2π)4A~μ(k)(k2gμν+(11ξ)kμkν)A~ν(k)\begin{aligned} S'[A] &= \int d^4x [-\frac{1}{4}(F_{\mu\nu})^2 - \frac{1}{2\xi}(\partial^{\mu}A_{\mu})^2]\\ &= \frac{1}{2}\int \frac{d^4k}{(2\pi)^4}\tilde{A}_{\mu}(k)(-k^2g^{\mu\nu}+(1-\frac{1}{\xi})k^{\mu}k^{\nu})\tilde{A}_{\nu}(-k)\\ \end{aligned}

光子传播子 D~Fνρ(k)\tilde{D}_{F}^{\nu\rho}(k) 满足的方程为:

(k2gμν+(11ξ)kμkν)D~Fνρ(k)=iδμ  ρ(-k^2g_{\mu\nu} + (1-\frac{1}{\xi})k_{\mu}k_{\nu})\tilde{D}_F^{\nu\rho}(k) = i\delta_{\mu}^{\ \ \rho}

得到:

D~Fνρ(k)=ik2+iϵ(gμν(1ξ)kμkνk2)\tilde{D}_F^{\nu\rho}(k) = \frac{-i}{k^2+i\epsilon}(g^{\mu\nu} - (1-\xi)\frac{k^{\mu}k^{\nu}}{k^2})

ξ=0\xi=0 时对应 朗道规范 Laudau gauge,有:

D~Fνρ(k)=ik2+iϵ(gμνkμkνk2)(13)\tilde{D}_F^{\nu\rho}(k) = \frac{-i}{k^2+i\epsilon}(g^{\mu\nu} - \frac{k^{\mu}k^{\nu}}{k^2})\tag{13}

ξ=0\xi=0 时对应 费曼规范 Feynman gauge,有:

D~Fνρ(k)=igμνk2+iϵ(14)\tilde{D}_F^{\nu\rho}(k) = \frac{-ig^{\mu\nu}}{k^2+i\epsilon}\tag{14}

本组笔记中习惯使用费曼规范。

Faddeev-Popov 过程保证了:任何从费曼图中计算出来的规范不变的关联函数将是独立于 ξ\xi 的。并且 Ward 等式告诉我们:对于任何 QED 的矩阵元,如果其外费米子均在壳,若添加一个正比于 qμq^{\mu} 的项到光子传播子 Dμν(q)D^{\mu\nu}(q)(即改变 ξ\xi 的值),这个矩阵元将不变化。

旋量场的量子化

旋量场分为费米子场与玻色子场,分别遵循反对易关系与对易关系。我们以 DiracDirac 场,即 12\frac{1}{2}-旋量场为例,它们遵循反对易关系。为了对 Dirac 场进行量子化,我们需要先了解有关反对易数:Grassmann numbers 的基本知识。

Grassmann 数

Grassmann 数的基本性质是:任意两个 Grassmann 数 θ,η\theta,\eta 之间遵循反对易关系:

θη=ηθ(15)\theta\eta = -\eta\theta\tag{15}

容易得到:

θ2=0(16)\theta^2 = 0\tag{16}

因此任意一个关于 θ\theta 的函数都可以写为如下形式:

f(θ)=A+Bθ(17)f(\theta) = A+B\theta \tag{17}

其中 A,BA,B 为对易数。
有关 Grassman 数的积分具有如下性质:

  • 线性性

dθ[af(θ)+bg(θ)]=adθf(θ)+bdθg(θ)\int d\theta [af(\theta) + bg(\theta)] = a\int d\theta f(\theta) + b\int d\theta g(\theta)\\

在量子场论中,我们希望作 shift:θθ+η\theta \rightarrow \theta + \eta 时,积分值不发生变化,即:

dθ(A+Bθ)=dθ((A+Bη)+Bθ)\int d\theta (A+B\theta) = \int d\theta ((A+B\eta)+B\theta)

再结合线性性可得,如下积分的结果只能取为 BB 的倍数(通常取 11):

dθ(A+Bθ)=B\int d\theta (A+B\theta) = B

利用上式将得到如下结果:

dθ=1,dθ θ=1(18)\int d\theta = 1,\quad \int d\theta\ \theta = 1 \tag{18}

有关 Grassmann 数的积分顺序是重要的,例如:

dθdη ηθ=+1\int d\theta \int d\eta\ \eta \theta = +1

我们习惯上从内部的积分开始做起。
现在定义 Grassmann 数的厄密共轭:

(θη)=ηθ=θη(\theta\eta)^* = \eta^*\theta^* = -\theta^*\eta^*

我们定义:

θ=θ1+iθ22,θ=θ1iθ22\theta = \frac{\theta_1 + i\theta_2}{\sqrt{2}},\quad \theta^* = \frac{\theta_1 - i\theta_2}{\sqrt{2}}

且有:

dθdθ(θθ)=1\int d\theta^*d\theta(\theta\theta^*) = 1

现在来看高斯积分:

dθdθeθbθ=dθdθ(1θbθ)=dθdθ(1+θθb)=bdθdθθθeθbθ=dθdθθθ(1θbθ)=dθdθθθ=1(19)\begin{aligned} \int d\theta^*d\theta e^{-\theta^* b\theta} &= \int d\theta^*d\theta(1-\theta^* b\theta)\\ &= \int d\theta^*d\theta(1+\theta\theta^* b) = b\\ \int d\theta^*d\theta\theta\theta^* e^{-\theta^* b\theta} &= \int d\theta^*d\theta\theta\theta^*(1-\theta^* b\theta)\\ &= \int d\theta^*d\theta\theta\theta^* = 1\\ \end{aligned}\tag{19}

现在考虑有一组共 nn 个复 Grassmann 数 θi,1in\theta_{i},1\leqslant i\leqslant n。我们可以对这组 Grassmann 数进行一个幺正变换:

θi=Uijθj\theta_{i}' = U_{ij}\theta_j

那么有:

iθi=1n!ϵijlθiθjθl=1n!ϵijlUiiθiUjjθjUllθl=1n!ϵijlUiiUjjUllθiθjθl=1n!ϵijlUiiUjjUllϵijl(iθi)=(detU)(iθi)\begin{aligned} \prod_{i}\theta_i' &= \frac{1}{n!}\epsilon^{ij\cdots l}\theta_i'\theta_j'\cdots \theta_l'\\ &= \frac{1}{n!}\epsilon^{ij\cdots l}U_{ii'}\theta_{i'}U_{jj'}\theta_{j'}\cdots U_{ll'}\theta_{l'}\\ &= \frac{1}{n!}\epsilon^{ij\cdots l}U_{ii'}U_{jj'}\cdots U_{ll'}\theta_{i'}\theta_{j'}\cdots\theta_{l'}\\ &= \frac{1}{n!}\epsilon^{ij\cdots l}U_{ii'}U_{jj'}\cdots U_{ll'}\epsilon^{i'j'\cdots l'}(\prod_i \theta_i)\\ &= (\det U)(\prod_i \theta_i) \end{aligned}

现在考虑如果对以下积分做一个幺正变换:θUθ\theta\rightarrow U\theta

(idθidθi)f(θ)(20)(\prod_i\int d\theta_i^* d\theta_i )f(\theta) \tag{20}

该变换的雅可比行列式为 11,所以积分测度不变。而考虑到 f(θ)f(\theta) 唯一对积分值有贡献的项将具有如下形式:

(iθi)(iθi)(\prod_{i}\theta_i)(\prod_{i}\theta_i^*)

至多相差一个倍数。那么在幺正变换下,上述式子成为:

(iθi)(iθi)det(U)det(U)(iθi)(iθi)=(iθi)(iθi)\begin{aligned} (\prod_{i}\theta_i)(\prod_{i}\theta_i^*) &\rightarrow \det(U)\det(U)^*(\prod_{i}\theta_i)(\prod_{i}\theta_i^*)\\ & = (\prod_{i}\theta_i)(\prod_{i}\theta_i^*)\\ \end{aligned}

因此对积分变量进行幺正变换不改变 (20)(20) 式的值。

我们可以计算如下推广的高斯积分:

(idθidθi)eθiBijθj=(idθidθi)eibiθiθi=ibi=detB(21)\begin{aligned} (\prod_i\int d\theta^*_i d\theta_i )e^{-\theta_i^* B_{ij}\theta_j} &= (\prod_i\int d\theta^*_i d\theta_i )e^{-\sum_{i}b_i\theta_i^* \theta_i}\\ &= \prod_{i}b_i = \det B\\ \end{aligned}\tag{21}

用矩阵形式写出更简洁:

dθdθeθBθ=detB\int d\bm{\theta}^\dagger d\bm{\theta} e^{-\bm{\theta}^\dagger\bm{B}\bm{\theta}} = \det \bm{B}

以及:

(idθidθi)θkθleθiBijθj=(detB)(B1)kl(22)(\prod_i\int d\theta^*_i d\theta_i )\theta_k\theta_l^* e^{-\theta_i^* B_{ij}\theta_j} = (\det B)(B^{-1})_{kl}\tag{22}

用矩阵形式给出证明:
具体来说,先对上式左边进行幺正变换:

θ=Uθθ=θU\bm{\theta} = \bm{U}\bm{\theta}'\quad \bm{\theta}^\dagger =\bm{\theta}'^\dagger \bm{U}^\dagger

使得 B\bm{B} 对角化:

UBU=b=diag(b1,,bi,)\bm{U}^\dagger\bm{B}\bm{U} = \bm{b} = \mathrm{diag}(b_1,\cdots,b_i,\cdots)

由此可得:

B1=Ub1U\bm{B}^{-1} = \bm{U}\bm{b}^{-1}\bm{U}^\dagger

进行幺正变换后,(22)(22) 式左边成为:

dθdθ(θθ)kleθBθ=dθdθ(UθθU)kleθbθ=dθdθ(Ub1U)kleθbθ=dθdθ(B1)kleθbθ=(detB)(B1)kl\begin{aligned} \int d\bm{\theta}^\dagger d\bm{\theta} (\bm{\theta\theta}^\dagger)_{kl}e^{-\bm{\theta}^\dagger\bm{B}\bm{\theta}} &= \int d\bm{\theta}'^\dagger d\bm{\theta}'(\bm{U}\bm{\theta}'\bm{\theta}'^\dagger \bm{U}^\dagger)_{kl}e^{-\bm{\theta}'^\dagger\bm{b}\bm{\theta}'}\\ &= \int d\bm{\theta}'^\dagger d\bm{\theta}'(\bm{U}\bm{b}^{-1}\bm{U}^\dagger)_{kl}e^{-\bm{\theta}'^\dagger\bm{b}\bm{\theta}'}\\ &= \int d\bm{\theta}'^\dagger d\bm{\theta}'(\bm{B}^{-1})_{kl}e^{-\bm{\theta}'^\dagger\bm{b}\bm{\theta}'}\\ &= (\det \bm{B})(\bm{B}^{-1})_{kl}\\ \end{aligned}

即与(22)(22) 式右边形式一致,得证。上式中第三步运用了 Grassmann 数积分的性质,不妨类比 (19)(19) 中第二式。

Dirac 场的量子化

有了关于 Grassmann 数的基础。我们现在可以对旋量场进行量子化了。现在我们可以将一个费米子场 ψ(x)\psi(x) 表示为:

ψ(x)=iψiϕi(x)\psi(x) = \sum_i \psi_i\phi_i(x)

其中 ϕi(x)\phi_i(x) 为 c-number 的函数。ψi\psi_i 为 Grassmann 数。为了描述 Dirac 场,我们取 ϕi\phi_i 为四分量旋量的基底。

Dirac 场的两点关联函数为:

0Tψ(x1)ψˉ(x2)0=DψˉDψexp[id4xψˉ(im)ψ]ψ(x1)ψˉ(x2)DψˉDψexp[id4xψˉ(im)ψ](23)\begin{aligned} \langle 0|T\psi(x_1)\bar{\psi}(x_2)|0\rangle &= \frac{\int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp[i\int d^4x \bar{\psi}(i\cancel{\partial}-m)\psi]\psi(x_1)\bar{\psi}(x_2)}{\int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp[i\int d^4x \bar{\psi}(i\cancel{\partial}-m)\psi] } \end{aligned}\tag{23}

其结果为:

0Tψ(x1)ψˉ(x2)0=det(im)d4k(2π)4(i(im))1eik(x1x2)det(im)=d4k(2π)4ieik(x1x2)km+iϵ=SF(x1x2)(24)\begin{aligned} \langle 0|T\psi(x_1)\bar{\psi}(x_2)|0\rangle &= \frac{\det(i\cancel{\partial}-m)\int \frac{d^4k}{(2\pi)^4}(-i(i\cancel{\partial}-m))^{-1}e^{-ik\cdot(x_1-x_2)}}{\det(i\cancel{\partial}-m)}\\ &= \int \frac{d^4k}{(2\pi)^4}\frac{ie^{-ik\cdot(x_1-x_2)}}{\cancel{k}-m + i\epsilon} = S_F(x_1-x_2)\\ \end{aligned}\tag{24}

Dirac 场的生成泛函为:

Z[ηˉ,η]=DψDψˉexp[id4x[ψˉ(im)ψ+ηˉψ+ψˉη]](25)Z[\bar{\eta},\eta] = \int \mathcal{D}\psi\mathcal{D}\bar{\psi}\exp[i\int d^4x[\bar{\psi}(i\cancel{\partial}-m)\psi + \bar{\eta}\psi + \bar{\psi}\eta]]\tag{25}

其中 η\eta 是一个 Grassmann 场。

考虑到 SF(xy)S_F(x-y) 是 Dirac 方程的格林函数:

(im)SF(xy)=iδ(4)(xy)(26)(i\cancel{\partial}-m)S_F(x-y) = i\delta^{(4)}(x-y)\tag{26}

因此,可以考虑对 ψ,ψˉ\psi,\bar{\psi} 进行如下 shift:

ψ=ψid4ySF(xy)η(y)ψˉ=ψˉ+id4ySF(xy)ηˉ(y)=ψˉid4ySF(yx)ηˉ(y)\begin{aligned} \psi &= \psi' - i\int d^4y S_F(x-y)\eta(y)\\ \bar{\psi} &= \bar{\psi}' + i\int d^4y S_F^*(x-y)\bar{\eta}(y)\\ &= \bar{\psi}' - i\int d^4y S_F(y-x)\bar{\eta}(y)\\ \end{aligned}

代入 (25)(25) 式,得到:

Z[ηˉ,η]=DψDψˉexp[id4x[ψˉ(im)ψ+ηˉψ+ψˉη]]=DψDψˉexp[id4x[ψˉ(im)ψ]exp[d4xd4yη(x)SF(xy)η(y)]=Z0exp[d4xd4yηˉ(x)SF(xy)η(y)]\begin{aligned} Z[\bar{\eta},\eta] &= \int \mathcal{D}\psi\mathcal{D}\bar{\psi}\exp[i\int d^4x[\bar{\psi}(i\cancel{\partial}-m)\psi + \bar{\eta}\psi + \bar{\psi}\eta]]\\ &= \int \mathcal{D}\psi'\mathcal{D}\bar{\psi}'\exp[i\int d^4x [\bar{\psi}'(i\cancel{\partial}-m)\psi']\exp[-\int d^4xd^4y\eta(x)S_F(x-y)\eta(y)]\\ &=Z_0\exp[-\int d^4xd^4y\bar{\eta}(x)S_F(x-y)\eta(y)]\\ \end{aligned}

即:

Z[ηˉ,η]=Z0exp[d4xd4yηˉ(x)SF(xy)η(y)](27)Z[\bar{\eta},\eta] = Z_0\exp[-\int d^4xd^4y\bar{\eta}(x)S_F(x-y)\eta(y)] \tag{27}

有关 Grassmann 数的求导,有:

ddηθη=θddηηθ=θ\frac{d}{d\eta}\theta\eta = -\theta \quad \frac{d}{d\eta}\eta\theta = \theta

这样,我们可以用泛函导数与生成泛函写出两点关联函数:

0Tψ(x1)ψˉ(x2)0=Z01(iδδηˉ(x1))(iδδη(x2))Z[ηˉ,η]ηˉ,η=0(28)\langle 0|T\psi(x_1)\bar{\psi}(x_2)|0\rangle = Z_0^{-1}(-i\frac{\delta}{\delta \bar{\eta}(x_1)})(i\frac{\delta}{\delta \eta(x_2)})Z[\bar{\eta},\eta]|_{\bar{\eta},\eta = 0} \tag{28}

利用 (27)(27) 式,立即得到上式的结果为:

0Tψ(x1)ψˉ(x2)0=SF(x1x2)\langle 0|T\psi(x_1)\bar{\psi}(x_2)|0\rangle = S_F(x_1-x_2)

QED

量子场论的路径积分表述让我们可以直接从拉氏量出发,推导费曼规则。现在我们来看 QED 的拉氏量:

LQED=ψˉ(iDm)ψ14(Fμν)2=ψˉ(im)ψ14(Fμν)2eψˉγμψAμ=L0eψˉγμψAμ\begin{aligned} \mathcal{L}_{QED} &= \bar{\psi}(i\cancel{D}-m)\psi - \frac{1}{4}(F_{\mu\nu})^2\\ &= \bar{\psi}(i\cancel{\partial}-m)\psi- \frac{1}{4}(F_{\mu\nu})^2 - e\bar{\psi}\gamma^{\mu}\psi A_{\mu}\\ &= \mathcal{L}_0 - e\bar{\psi}\gamma^{\mu}\psi A_{\mu}\\ \end{aligned}

可以进行展开:

exp[iL0][1ied4xψˉγμψAμ+]\exp[i\int\mathcal{L}_0][1-ie\int d^4x \bar{\psi}\gamma^{\mu}\psi A_{\mu} + \cdots]

其中自由场部分对应如下传播子:

d4p(2π)4ieip(xy)pm+iϵ\int \frac{d^4p}{(2\pi)^4}\frac{ie^{-ip\cdot(x-y)}}{\cancel{p}-m+i\epsilon}

d4q(2π)4igμνeiq(xy)q2+iϵ\int \frac{d^4q}{(2\pi)^4}\frac{-ig_{\mu\nu}e^{-iq\cdot(x-y)}}{q^2+i\epsilon}

相互作用项给出 QED 顶点:

ieγμd4x-ie\gamma^{\mu}\int d^4x

以上就是坐标空间中的费曼规则,我们将其重排后可以得到动量空间中的费曼规则。

泛函行列式

我们现在来考虑我们得到的泛函行列式的物理含义。
对于下列表达式:

DψˉDψexp[id4xψˉ(iDm)ψ]\int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp[i\int d^4x \bar{\psi}(i\cancel{D}-m)\psi]

其值可以表示为泛函行列式:

det(iDm)=det(imeA)=det(im)det(1iim(ieA))(28)\begin{aligned} \det(i\cancel{D}-m) &= \det(i\cancel{\partial} - m -e\cancel{A})\\ &= \det(i\cancel{\partial}-m)\cdot \det(1 - \frac{i}{i\cancel{\partial} - m}(-ie\cancel{A}))\\ \end{aligned}\tag{28}

bib_iBB 的本征值,那么有下列公式成立:

detB=ibi=exp[ilogbi]=exp[Tr(logB)]\det B = \prod_i b_i = \exp[\sum_i \log b_i] = \exp[\mathrm{Tr}(\log B)]

注意,我们现在使用 Tr()\mathrm{Tr}() 表示对算子求迹,用 tr()\mathrm{tr}() 表示求 Dirac 迹。

于是 (28)(28) 式中的如下因子可以展开为:

det(1iim(ieA))=exp[Trlog(1iim(ieA))]=exp[i=11nTr[(iim(ieA))n]]\begin{aligned} \det(1 - \frac{i}{i\cancel{\partial} - m}(-ie\cancel{A})) &= \exp[\mathrm{Tr}\log(1 - \frac{i}{i\cancel{\partial} - m}(-ie\cancel{A}))]\\ &= \exp[\sum_{i=1}^{\infty}-\frac{1}{n}\mathrm{Tr}[(\frac{i}{i\cancel{\partial} - m}(-ie\cancel{A}))^n]] \end{aligned}

考虑以下费曼规则:

其值为:

ieγμd4xAμ(x)-ie\gamma^{\mu}\int d^4x A_{\mu}(x)

可以得到费米子行列式的值为以下费曼图的和。

这是容易理解的。因为考虑以下图:

对应的值为:

1ndx1dxntr[(ieA(x1))SF(x2x1)(ieA(xn))SF(x1xn)]=1nTr[(iim(ieA))n]\begin{aligned} &-\frac{1}{n}\int dx_1\cdots dx_n \mathrm{tr}[(-ie\cancel{A}(x_1))S_F(x_2-x_1)\cdots(-ie\cancel{A}(x_n))S_F(x_1-x_n)]\\ =& -\frac{1}{n}\mathrm{Tr}[(\frac{i}{i\cancel{\partial} - m}(-ie\cancel{A}))^n]\\ \end{aligned}

其中因子为 1/n1/n 而不是 1/n!1/n! 是由于:指标的顺序是重要的。